LDA(Linear Discriminant Analysis)
- 模型:
Pr(Y=k|X=x)=πkfk(x)∑kl=1πlfl(x)
假设:第k类的观测值来自于多元高斯分布 N(μk,Σ)
即:
fk(x)=Pr(X=x|Y=y)
f(x)=1(2π)P/2|Σ|1/2exp[−12(x−μ)−1Σ−1(x−μ)]
2 . P表示特征的数量、
Σ
表示协方差矩阵
当P = 1 时:
f(x)
假设为一维高斯分布,
Σ
用方差
σ2
表示,则
问题:在实际中, fk(x) 是未知的,需要通过训练集预测,LDA(P=1)假设了 fk(x) 来自于一维高斯分布
再假设: σ21=σ22=...=σ2k=σ2 ,
将
fk(x)
代入模型,获得取某个特定x值时,记录术语第k类的概率
即:
Pk(x) 最大表示取x值的记录最有可能术语类别k
取对数且化简:
参数估计
实际的
Pk(x)
分布并不可知,因此需要估计
μ1..μk;π1...πk;σ2
LDA采用了plugging estimates方法进行参数估计:
μk^=1nk∑i:yi=kxi
πk^=nkn
σ2^=1n−k∑Kk=1∑i:yi=k(xi−μ^k2)
3.P>1
同理得:
参数估计的方法同上,需要估计协方差矩阵 Σ
4.评价:confusion matrix
QDA(Quadratic Discriminat Analysis)
与LDA**相同**,QDA也假设了每个类的观测值都来自于高斯分布
与LDA**不同**,QDA假设每个类有它们自己的协方差矩阵,即
N(μk,Σk)
因此:
原因:
1.variance-bias trade-off : 在现实情况中,真实的分布f不能得到,需要通过观测值组成训练集来估计。训练集可能不完全也可能来自于不同的观测值,因此variance反应了不同数据集预测得到的 \f^ 和 \f 之间差距的变化度。bias反应了预测的误差。
2.QDA相比LDA需要估计更多的参数,当数据量足够大时,variance不再是主要的问题,选用QDA更好
3.当数据量较小时,LDA更常用。