Deep Learning:PyTorch 基于docker 容器的分布式训练实践

本文详细介绍了如何在Docker容器中进行PyTorch的分布式训练,涵盖多机环境的设置,使用Gloo和NCCL后端,以及InfiniBand通信方式。通过具体的实践步骤,包括环境配置、代码修改和启动命令,展示了如何在Linux环境下进行GPU和CPU的分布式训练。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

引言

PyTorch distributed currently only supports Linux.
 
这句话是来自 pytorch 官网 的 torch.distributed 部分,说明 pytorch 支持分布式训练,而且只在linux 上支持。
 
torch.distributed supports three backends, each with different capabilities.
 
同样来自上述 页面,pytorch 在分布式训练中,支持三种后端(backend)进行集群管理或者通信。
在这里插入图片描述
那么,在什么情况下选用什么样的backend?

  • 经验法则
    • 使用NCCL后端进行分布式GPU培训
    • 使用Gloo后端进行分布式CPU培训。
  • 具有InfiniBand互连的GPU主机
    • 使用NCCL,因为它是目前唯一支持InfiniBand和GPUDirect的后端。
  • GPU主机与以太网互连
    • 使用NCCL,因为它目前提供最佳的分布式GPU训练性能,特别是对于多进程单节点或多节点分布式训练。如果您遇到NCCL的任何问题,请使用Gloo作为后备选项。(请注意,Gloo目前运行速度比GPU的NCCL慢。)
  • 具有InfiniBand互连的CPU主机
    • 如果您的InfiniBand已启用IP over IB,请使用Gloo,否则请使用MPI。我们计划在即将发布的版本中为Gloo添加InfiniBand支持。
  • 具有以太网互连的CPU主机
    • 除非您有特殊原因要使用MPI,否则请使用Gloo。

实践部分

  • 首先,假设,我们要起一个分布式训练,起 2 个 rank。
  • 把他们起来两台机器上,机器 1 的 ip 为 192.168.61.55,机器 2 的 ip 为 192.168.61.56
  • 机器 1 上起 1 个 rank,机器 2 上起 1 个 rank

我这里使用的示例代码来自于 github 上的一段开源代码, 地址是 https://github.com/pytorch/examples/tree/master/mnist 。我对这段代码做了些更改&

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值