引言
PyTorch distributed currently only supports Linux.
这句话是来自 pytorch 官网 的 torch.distributed 部分,说明 pytorch 支持分布式训练,而且只在linux 上支持。
torch.distributed supports three backends, each with different capabilities.
同样来自上述 页面,pytorch 在分布式训练中,支持三种后端(backend)进行集群管理或者通信。
那么,在什么情况下选用什么样的backend?
- 经验法则
- 使用NCCL后端进行分布式GPU培训
- 使用Gloo后端进行分布式CPU培训。
- 具有InfiniBand互连的GPU主机
- 使用NCCL,因为它是目前唯一支持InfiniBand和GPUDirect的后端。
- GPU主机与以太网互连
- 使用NCCL,因为它目前提供最佳的分布式GPU训练性能,特别是对于多进程单节点或多节点分布式训练。如果您遇到NCCL的任何问题,请使用Gloo作为后备选项。(请注意,Gloo目前运行速度比GPU的NCCL慢。)
- 具有InfiniBand互连的CPU主机
- 如果您的InfiniBand已启用IP over IB,请使用Gloo,否则请使用MPI。我们计划在即将发布的版本中为Gloo添加InfiniBand支持。
- 具有以太网互连的CPU主机
- 除非您有特殊原因要使用MPI,否则请使用Gloo。
实践部分
- 首先,假设,我们要起一个分布式训练,起 2 个 rank。
- 把他们起来两台机器上,机器 1 的 ip 为 192.168.61.55,机器 2 的 ip 为 192.168.61.56
- 机器 1 上起 1 个 rank,机器 2 上起 1 个 rank
我这里使用的示例代码来自于 github 上的一段开源代码, 地址是 https://github.com/pytorch/examples/tree/master/mnist 。我对这段代码做了些更改&