点积和余弦距离

1. 点积(Dot Product)

点积是两个向量的“乘积”,但这个乘积不是按元素一一相乘的,而是通过以下方式计算的:

  • 公式

    AB=∥A∥∥B∥cosθ

    其中,∥A∥ 和∥B∥ 是向量的长度(模),θ 是它们之间的夹角。

  • 通俗解释
    点积其实是衡量两个向量相似程度的一种方式。具体来说,它反映了向量A沿着向量B的方向的投影有多长。可以想象,把向量A投影到向量B上,点积就是投影的长度与向量B的长度的乘积。

    • 如果两个向量方向完全相同,点积最大。
    • 如果两个向量垂直(即夹角90度),点积为零。
    • 如果两个向量方向相反,点积为负数。

2. 余弦距离(Cosine Distance)

余弦距离是基于余弦相似度来衡量向量间差异的一种方法。余弦相似度本质上是通过点积计算的,但它忽略了向量的长度,只关心它们的方向关系。

  • 公式

    在这里插入图片描述

    余弦距离则是:

    余弦距离=1−余弦相似度余弦距离=1−余弦相似度

  • 通俗解释
    余弦相似度通过计算两个向量的夹角的余弦值来度量它们的相似性,完全相同的方向的两个向量,其余弦相似度为1;完全相反的方向的两个向量,余弦相似度为-1;夹角为90度的两个向量(即正交)余弦相似度为0。
    余弦距离则是余弦相似度的反向度量。两个向量完全相似时,余弦距离为0;两个向量完全不同(相反)时,余弦距离为2。

再来干货

示例:

假设我们有两个二维向量:

  • 向量 A: A=(3,4)
  • 向量 B: B=(4,3)

我们将分别计算这两个向量的 点积余弦距离

1. 点积的计算

点积的公式是:
其中证明可以看(向量点积定义的证明_向量点积 证明-CSDN博客
A⋅B=A1×B1+A2×B2

其中,A1和 A2是向量 A 的两个分量,B1 和 B2 是向量 B 的两个分量。

  • 向量 A: A=(3,4)
  • 向量 B: B=(4,3)

点积计算:

AB=(3×4)+(4×3)=12+12=24

所以,点积 AB=24。


2. 余弦相似度的计算

首先,我们需要计算向量 A 和向量 B 的模(长度)。

  • 向量 A 的模:

在这里插入图片描述

  • 向量 B 的模:

∥**B**∥=*B*12+*B*22=42+32=16+9=25=5

接下来,我们可以计算余弦相似度:

cos*θ*=∥**A**∥∥**B**∥**A**⋅**B**=5×524=2524=0.96

所以,余弦相似度 cosθ=0.96。


3. 余弦距离的计算

余弦距离是通过余弦相似度来计算的:

余弦距离=1−cos⁡θ余弦距离=1−cosθ

根据前面计算的余弦相似度:

余弦距离=1−0.96=0.04

所以,余弦距离 =0.04。


总结:

  • 点积:AB=24
  • 余弦相似度:cosθ=0.96
  • 余弦距离:余弦距离=0.04

在这个例子中,余弦相似度非常接近 1,表明这两个向量的方向非常相似,而余弦距离非常小,表示它们几乎是相同的方向。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值