从网上找到一个通过numpy array生成tfrecord的代码,但是运行时报错,出现TypeError: only integer scalar arrays can be converted to a scalar index错误,原因是该记录为类型不匹配 需要从integer scalar arrays -> 单个int64数字
"""
原有问题代码如下,注释部分为正确代码
本程序演示了如何保存numpy array为TFRecords文件,并将其读取出来。
"""
import random
import numpy as np
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
def save_tfrecords(state_data, action_data, reward_data, dest_file):
"""
保存numpy array到TFRecord文件中。
这里输入了三个不同的numpy array来做演示,它们含有不同类型的元素。
Args:
state_data: 要保存到TFRecord文件的第1个numpy array,每一个 state_data[i] 是一个 numpy.ndarray(数组里的每个元素又是一个浮点
数),因此不能用 Int64List 或 FloatList 来存储,只能用 BytesList。
action_data: 要保存到TFRecord文件的第2个numpy array,每一个 action_data[i] 是一个整数,使用 Int64List 来存储。
reward_data: 要保存到TFRecord文件的第3个numpy array,每一个 reward_data[i] 是一个整数,使用 Int64List 来存储。
dest_file: 输出文件的路径。
Returns:
不返回任何值
"""
with tf.io.TFRecordWriter(dest_file) as writer:
for i in range(len(state_data)):
features = tf.train.Features(
feature={
# 不同点1 也是可以用floatList的
#"state": tf.train.Feature(
#float_list=tf.train.FloatList(value=state_data[i].astype(np.float))),
"state": tf.train.Feature(
bytes_list=tf.train.BytesList(value=[state_data[i].astype(np.float32).tobytes()])),
"action": tf.train.Feature(
int64_list=tf.train.Int64List(value=[action_data[i]])),
"reward": tf.train.Feature(
int64_list=tf.train.Int64List(value=[reward_data[i]]))
# 不同点2
# "action": tf.train.Feature(
# int64_list=tf.train.Int64List(value=action_data[i].astype(np.int))),
# "reward": tf.train.Feature(
# int64_list=tf.train.Int64List(value=reward_data[i].astype(np.int)))
}
)
tf_example = tf.train.Example(features=features)
serialized = tf_example.SerializeToString()
writer.write(serialized)
if __name__ == '__main__':
buffer_s, buffer_a, buffer_r = [], [], []
# 随机生成一些数据
for i in range(3):
state = [round(random.random() * 100, 2) for _ in range(0, 10)] # 一个数组,里面有10个数,每个都是一个浮点数
action = random.randrange(0, 2) # 一个数,值为 0 或 1
reward = random.randrange(0, 100) # 一个数,值域 [0, 100)
# 把生成的数分别添加到3个list中
buffer_s.append(state)
buffer_a.append(action)
buffer_r.append(reward)
# 查看生成的数据
print(buffer_s)
print(buffer_a)
print(buffer_r)
# 在水平方向把各个list堆叠起来,堆叠的结果:得到3个矩阵
s_stacked = np.vstack(buffer_s)
a_stacked = np.vstack(buffer_a)
r_stacked = np.vstack(buffer_r)
print(s_stacked.shape) # (3, 10)
print(a_stacked.shape) # (3, 1)
print(r_stacked.shape) # (3, 1)
print(s_stacked)
print(a_stacked)
print(r_stacked)
print("data generate sucess!")
# 写入TFRecord文件
output_file = './data.tfrecord' # 输出文件的路径
save_tfrecords(s_stacked, a_stacked, r_stacked, output_file)
原始代码块:
action:为
[[0]
[1]
[1]]
通过切片操作获取其中的一个元素,这个元素也是list,所以不需要再强制转为list,通过 .astype(np.int) 转为具体类型
参考链接:
【1】numpy数组TypeError:只能将整数标量数组转换为标量索引(numpy array TypeError: only integer scalar arrays can be converted to a scalar index)
【2】Numpy中stack(),hstack(),vstack()函数详解