TensorFlow MNIST数据集手写数字识别(并解决MNIST数据集下载问题:urllib.error.HTTPError: HTTP Error 404: Not Found)

这篇博客介绍如何使用TensorFlow处理MNIST数据集的手写数字识别。由于标准数据获取代码可能失败,建议在代码目录下手动下载MNIST_data目录中的四个文件。搭建的网络包括28x28像素的输入和10类的softmax输出,使用交叉熵作为损失函数和梯度下降优化器。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一、准备数据

二、搭建网络

三、完整代码

四、运行结果


本篇博客主要介绍通过TensorFlow实现MNIST数据集的手写数字识别。

一、准备数据

首先需要获取数据,可以通过以下代码进行获取:

from tensorflow.examples.tutorials.mnist import input_data
# 获取数据,number 1 to 10
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)

注:由于使用以上代码获取数据经常获取不到,因此需要先对数据进行下载,在代码同目录下创建MNIST_data目录,并在http://yann.lecun.com/exdb/mnist/下载下面四个文件,不用解压直接放到MNIST_data目录下。

<
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

cchangcs

谢谢你的支持~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值