【论文笔记】VL-BERT: PRE-TRAINING OF GENERIC VISUAL- LINGUISTIC REPRESENTATIONS

VL-BERT是为了解决视觉与语言任务中缺乏通用表示的问题而设计的。通过预训练在大规模视觉-语言语料库和纯文本数据上,它提升了聚合和对齐视觉-语言线索的能力。与LXMERT等两流模型不同,VL-BERT采用单流统一模型,参数更新包括快速R-CNN。预训练任务包括带视觉线索的掩蔽语言建模和带语言线索的掩蔽RoI分类。实验在VCR、VQA和引用表达理解等任务上展示了其效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

For tasks at the intersection of vision and language, there lacks such pre-trained generic feature representations.


motivation:这篇文章和unified的思想很接近,希望训练出能够适应各类下游任务的通用表示模型。

简介

To better exploit the generic representation, we pre-train VL-BERT at both large visual-linguistic corpus and text-only datasets. The pre-training loss on the visual-linguistic corpus is incurred via predicting randomly masked words or RoIs. Such pre-training sharpens the capability of VL-BERT in aggregating and aligning visual-linguistic clues. While the loss on the text-only corpus is of the standard MLM loss in BERT, improving the generalization on long and complex sentences.


这篇文章与类似原版BERT的相似度非常之高,类似的工作也很多,有比较多的内容我并没有记录。

  • 值得一提的是,预训练语料不仅包含双模态数据,还包含纯文本数据。纯文本数据是为了提升模型对于长难句子的处理能力。

相关工作

The authors of ViLBERT c

### 多模态RAG概述 多模态RAG(Retrieval-Augmented Generation)旨在增强传统文本生成模型的能力,使其能够处理多种数据形式。通过引入视觉、音频以及其他类型的输入,这些系统可以提供更丰富的上下文理解能力[^2]。 ### 实现方式 为了构建一个多模态RAG系统,通常会采用如下策略: #### 数据预处理阶段 在这个过程中,来自不同源的数据被转换成统一表示形式以便于后续处理。对于图像和视频这样的非结构化数据来说,这一步骤尤为重要。例如,在处理图片时可能会先提取特征向量作为其代表;而对于语音信号,则可以通过声谱图等方式将其转化为适合机器学习算法使用的格式。 ```python from transformers import CLIPProcessor, CLIPModel model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32") def preprocess_image(image_path): image = Image.open(image_path) inputs = processor(images=image, return_tensors="pt", padding=True) outputs = model.get_image_features(**inputs) return outputs.detach().numpy() ``` #### 跨模态融合机制设计 当面对包含多个感官通道的任务需求时,如何有效地整合各类感知信息成为了一个挑战。一种常见的做法是在编码器内部建立共享参数空间来促进不同类型表征之间的交互作用;另一种则是利用注意力机制让解码端动态调整对各路输入的关注程度[^1]。 #### 检索模块优化 考虑到实际应用场景下的效率考量,针对大规模数据库快速定位最相关条目的技术也得到了重视和发展。比如借助近似最近邻搜索(ApNN)算法可以在不影响精度的前提下显著缩短查询时间开销。 ### 研究论文推荐 有关此主题的研究成果层出不穷,以下是几篇具有代表性的工作: - **Multimodal Retrieval Augmented Generation for Complex Reasoning over Text and Images**: 探讨了结合文本与图像进行复杂推理的方法论创新。 - **VL-BERT: Pre-training of Generic Visual-Linguistic Representations from Scratch via Multi-task Learning**: 提出了一个可以从头训练通用视语义联合表达框架的新颖思路。 - **Unicoder-VL: A Universal Encoder for Vision and Language by Cross-modal Pre-training with Hard Negative Examples**: 阐述了一种用于跨媒体任务的有效解决方案——即通过困难负样本辅助的交叉模式预训练得到广泛适用性的编码网络架构。 ### 应用案例展示 目前已有不少成功的商业产品和服务采用了类似的原理和技术路线: - **搜索引擎改进**:现代互联网巨头们正积极尝试将多媒体元素融入自家平台的核心功能当中去,从而改善用户体验并提高广告投放精准度; - **虚拟助手升级**:新一代AI聊天机器人不仅限于文字对话交流,还能识别用户上传的照片甚至实时捕捉周围环境变化作出回应; - **医疗影像分析工具开发**:医生可借助此类软件迅速获取病历资料摘要的同时查看对应的X光片或CT扫描结果,进而做出更加准确诊断决策。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值