机器学习之KNN算法原理和代码实现

什么是KNN算法

KNN算法是根据已有的特征,对目标样本进行计算该样本到已知所有样本点的欧拉距离,根据超参数K的来确定前K个的样本类别,从而确定目标样本的类别。是监督算法中的分类问题。

生成模拟数据

import numpy as np 
import matplotlib.pyplot as plt 
#定义特征值 
raw_data_x=[[3.3144558 , 2.33542461], 
[3.75497175, 1.93856648], 
[1.38327539, 3.38724496], 
[3.09203999, 4.47090056], 
[2.58593831, 2.13055653], 
[7.41206251, 4.80305318], 
[5.912852 , 3.72918089], 
[9.21547627, 2.8132231 ], 
[7.36039738, 3.35043406], 
[7.13698009<
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AIGC人工智残

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值