格罗比纳基计算与Buchberger - Möller算法优化
在代数计算领域,格罗比纳基(Gröbner basis)的计算是一个重要的问题,而Buchberger - Möller算法(简称BM算法)在求解格罗比纳基方面发挥着关键作用。本文将深入探讨格罗比纳基计算中的单项式比较复杂度,并介绍BM算法的两种改进方案。
1. 格罗比纳基计算中的单项式比较
在格罗比纳基计算中,常常需要计算两个多项式 (f) 和 (g) 的S - 多项式 (S(f, g) = x^2f - x^3g)。为了简化计算,我们将表达式写成序向量列表并省略系数。假设我们有:
(a = (3, 0, \cdots, 0, -1, 0, \cdots, 0, -2))
(b = ((3, 0, \cdots, 0, -2, -1), (3, 0, \cdots, 0, -1, -2, 0), \cdots, (3, -1, -1, 0, \cdots, 0, -1, 0)))
通过一系列比较操作,我们可以得出 (a) 和 (b) 中元素的大小关系。传统的比较方法需要 ((s + 2) \cdot (s - 2) = s^2 - 4) 次比较,而采用优化后的方法只需要 (2s + 1) 次比较。不过,在实际计算中,还需要额外的成本来记录 (\Delta(a, b_i)) 的值。
2. BM算法的两种表述
BM算法以一组点 (P = {p_1, \cdots, p_m}) 和一个单项式序 (\prec) 作为输入,输出理想 (I) 的格罗比纳基 (G) 和不在初始理想 (in(I)) 中的单项式集合 (B)。该算法有两种不同的表述方式:
<