
推荐系统理论
文章平均质量分 81
Gold_Spring
2-3的目标:程序员中的黑马!!!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
推荐系统——基本概念
序帕洛阿尔托研究中心的Tapestry系统(Goldberg et al.1992)引入了协同过滤的思想和概念,展示了如何将显示标注数据和隐式行为数据注入可查询的数据库中,以及用户如何利用这些数据进行个性化过滤。Grouplens系统(Resnick et al.1994)展示了协同过滤方法既能跨网计算又能自动完成,GroupLens针对Usenet新闻消息进行自动协同过滤。MIT的Ringo原创 2015-04-18 17:38:31 · 3755 阅读 · 0 评论 -
运行第一个推荐引擎
引言Mahout包含一个推荐引擎,其中有几种类型实际来自于传统的基于用户和基于物品的推荐程序。它也包含了其他几个算法实现,但是现在我们先看一个简单的基于用户的推荐程序。 目录创建输入创建一个推荐程序分析输出评估一个推荐程序训练数据与评分运行RecommenderEvaluator评估结果评估查准率和查全率运行RecommenderIRStatsEvaluator评估GroupL原创 2015-04-19 22:04:11 · 1001 阅读 · 0 评论 -
推荐数据的表示
引言推荐的质量很大程度上取决于数据的数量和质量。拥有高质量的数据当然是件好事,而且通常越多越好。 但是,推荐算法天生是数据密集型的,其计算涉及对大量信息的访问。因此,数据的数量和表示方式很大程度上影响执行性能。智能地选择数据结构能够极大地改善性能,数据达到一定规模的时候,这并非小事。目录Mahout如何表示推荐数据DataModel的实现和用法无偏好值时的数据处理1、Mahout如何表示推原创 2015-04-20 16:59:42 · 797 阅读 · 0 评论 -
进行推荐二
引言 探索相似性度量:基于用户推荐程序的另一个重要部分是UserSimilarity实现。基于用户的推荐程序非常依赖这个组件。如果对用户之间的相似性缺乏可靠并有效的定义,这类推荐方法是没有意义的。这也适用于基于用户推荐程序的近亲——基于物品的推荐程序,它同样依赖于相似性。这一个组件非常重要。基于皮尔逊相关系数的相似度皮尔逊相关系数是一个介于-1到1之间的数,它度量两个一一对应的数列之间的线性相关程原创 2015-04-26 11:04:03 · 787 阅读 · 0 评论 -
进行推荐一
引言 前面提到的两种典型的推荐算法,他们均在Mahout中得到实现:基于用户的推荐程序和基于物品的推荐程序。两种算法均依赖于两个事物(用户或物品)之间的相似性度量,或者说等同性定义。相似性的定义有多种:包括基于皮尔逊相关系数(Pearson correlation)、对数似然值(log likehood)、斯皮尔曼相关系数(Spearman correlation)、谷本系数(Tanimoto c原创 2015-04-26 00:21:07 · 616 阅读 · 0 评论