深度学习在语义分割中的进展与应用

本文探讨深度学习在语义分割中的作用,从CNN的演进到全卷积网络、编码器-解码器结构、膨胀卷积和注意力机制。讨论了数据效率、实时处理和多模态学习等当前趋势,以及面临的挑战,如细粒度分割、鲁棒性和公平性。还提供了一个使用Python实现语义分割的代码大纲。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无水先生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值