
基础理论
文章平均质量分 92
无水先生
擅长数学,能熟练应用泛函分析、统计学、随机过程、逼近论、微分几何、非欧几何(双曲、共形)等数学理论,有数学建模能力。从事图像处理二十年以上,从事人工智能行业10年以上;在船舶、通信、铁路、教育等行业开发软件产品。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
变分原理--汉密尔顿最小作用原理
汉密尔顿的最小作用原理很好地说明了自然界中的物理现象为什么会是这样。尽管由于与欧拉-拉格朗日方程的等价性,该原理本身并没有引入新的力学,但其重要性不容忽视原创 2024-05-19 00:09:10 · 3246 阅读 · 0 评论 -
【渲染数学-01】如何模拟静态流( 下)
关于流体物质的仿真和模拟,需要流体理论方面的一般知识。我们这里从基本流体方程入手,详细解释如何实现流体仿真的每一个具体步骤。原创 2024-05-15 11:23:18 · 3125 阅读 · 0 评论 -
理解伽马分布
在本文中,我们将探讨统计学中的基本概率分布之一“伽马分布”。我们将揭示它在连续随机变量建模中的重要性,并将其与泊松分布进行对比。通过了解其参数,例如形状和速率,并深入研究实际示例,例如预测患者到达牙科诊所。原创 2024-05-13 18:21:36 · 8721 阅读 · 0 评论 -
【数学建模】矩阵微分方程
我相信你们中的许多人都熟悉微分方程,或者至少知道它们。微分方程是数学中最重要的概念之一,也许最著名的微分方程是布莱克-斯科尔斯方程,它控制着任何股票价格。原创 2024-05-04 00:19:27 · 4229 阅读 · 10 评论 -
线性代数:抽象向量空间
有些函数系列极具线性代数的向量特征。这里谈及多项式构成函数的线性代数意义。问题是这个主题能展开多少内涵?请看本文的论述。原创 2024-04-26 12:00:07 · 4218 阅读 · 1 评论 -
为什么要学习数学/科学史?
哈代的经典著作《数学家的道歉》,他在书中为自己选择的数学职业辩护,他坦诚了自己一生贡献之微不足道。事实是,哈代没什么可道歉的。哈代是一位真正的顶级数学家,完全有资格获得他选择的头衔,并且以伯乐之能,挖掘了人类金矿哈马努金。而数学是人类的史诗,每个数学家只要成了一个音符已经足够。原创 2024-04-04 13:28:42 · 2989 阅读 · 0 评论 -
余集和拉格朗日定理
数学家总是痴迷于根据乍一看似乎完全无关的事实/观察来形成概括。为什么?原因很简单,如果我们知道相同的骨架是不同数学结构的基础,那么我们就可以只详细研究一种结构,并确信其他结构也会得到类似的结果。这不是节省了很多时间吗!原创 2024-04-04 13:04:41 · 3175 阅读 · 0 评论 -
素数的计数律:Π函数、歪斜数
自从人类开始掌握最起码的算术概念以来,有一类数字一直处于最前沿——素数。素数定义简单,但难以捕捉,众所周知,素数是数学中一些最困难问题的罪魁祸首,让几代最优秀的数学家感到困惑。原创 2024-03-31 11:21:17 · 3141 阅读 · 0 评论 -
欧拉-马斯切罗尼常数
知道欧拉常数是什么吗?知道啥是调和级数吗?这里给出欧拉常数的来龙去脉,和调和级数以及ln(n)的关系。原创 2024-03-29 12:21:31 · 3332 阅读 · 0 评论 -
球面数据的几何深度学习--球形 CNN
球面数据的几何深度学习--球形 CNN。通过对物理世界的平移对称性进行编码,卷积神经网络 (CNN) 彻底改变了计算机视觉。原创 2024-03-22 14:40:25 · 3184 阅读 · 1 评论 -
爱因斯坦可以教给在机器学习中利用对称性
在许多方面,物理学和机器学习都有一个共同的目标:制定观察到的现象的模型。为了实现这一目标,物理学家早就认识到对称性的重要性。在这篇文章中,我们将探讨如何利用物理学中的对称性思想作为机器学习的指导原则。原创 2024-03-21 17:39:21 · 2937 阅读 · 0 评论 -
s2fft库介绍:可微分和加速球谐变换
科学和工程的许多领域都会遇到在球体上定义的数据。对此类数据进行建模和分析通常需要傅里叶变换的球面对应物,即球面谐波变换。我们简要概述了球谐变换,并提出了一种新的可微分算法,该算法专为GPU上的加速而定制[1]。原创 2024-03-18 14:41:12 · 3144 阅读 · 0 评论 -
太阳系的混沌与稳定
在过去的二十年里,人们已经认识到混沌动力学在太阳系中普遍存在。我们现在了解到,太阳系中小成员——小行星、彗星和行星际尘埃——的轨道是混沌的,并且在地质时间尺度上发生了巨大的变化。主要行星的轨道也是混乱的吗?答案并不简单,其中的微妙之处引发了新的问题。原创 2024-03-14 08:08:59 · 3020 阅读 · 0 评论 -
从马尔可夫奖励过程到马尔可夫决策到强化学习【01/2】
关于马尔可夫过程,如何将马尔可夫决策转化成决策依据,这里介绍的基本的思想路径,为读者将来设计和应用决策模型提供理论上的参考。原创 2023-12-31 12:34:07 · 5123 阅读 · 0 评论 -
什么是希尔伯特空间?
在本文中,我们将探讨希尔伯特空间这个非常重要的主题。希尔伯特空间由于其特性而经常出现在物理和工程中。为了理解希尔伯特空间,我们从度量空间的定义开始。原创 2023-11-21 00:38:40 · 4938 阅读 · 1 评论 -
著名的《NP问题》是个啥概念?
关于复杂问题,始终是计算机科学挡在路前的一块巨石。所谓一个问题有解,但需要2^100秒完成,这相当于说,此类问题目前无解。还有一类问题是说不清楚到底有没有一个具体解法,该解法能在多项式时间复杂函数上完成。以上归于NP类问题,本文专门讨论NP类问题的前因后果,以增加读者的见识。原创 2023-11-16 11:57:16 · 2969 阅读 · 0 评论 -
雅可比行列式:它究竟是如何工作的?
关于雅各比,如果你熟悉任何多变量微积分,你可能听说过这个术语。老实说,我第一次了解雅可比矩阵时,我根本不明白它是如何工作的,但是知道雅可比矩阵在整个多变量微积分中被大量使用,并且将来会有文章我想写使用它,在本文中,我最终将尝试给出我最好的解释。原创 2023-10-23 18:34:34 · 4749 阅读 · 0 评论 -
雅可比矩阵和雅可比坐标
在本教程中,您将回顾一下雅可比行列式的简单介绍。完成本教程后,您将了解:雅可比矩阵收集了可用于反向传播的多元函数的所有一阶偏导数。雅可比行列式在变量之间变化时非常有用,它充当一个坐标空间与另一个坐标空间之间的缩放因子。原创 2023-10-23 17:25:41 · 5480 阅读 · 0 评论 -
使用 Python 进行卡方测试
卡方检验用于检验为分类变量创建的模型。也就是说,这是我们在统计学中经常遇到的另一个经典假设检验。该测试是事实与期望的统计版本。我们有一个理论,一个对事件的期望,我们也有观察,现在我们想比较它们。原创 2023-10-18 14:03:48 · 3280 阅读 · 1 评论 -
【统计学概念】初学者指南:了解置信区间
什么是置信区间?如何将概率转化成信心度?信心度如何去工作?这些初步的统计概念需要明晰,然后才能应用统计模型,然后是贝叶斯推理,我们将逐步深入这些概念。原创 2023-10-15 11:32:07 · 3952 阅读 · 0 评论 -
基本概念 I 和 Q:I/Q 数据的基础知识
I/Q 值是指两个复数分量,即正交振幅分量 In-phase (I) 和 Quadrature (Q)。I/Q 值在无线通信系统中广泛使用,尤其在数字信号处理领域中。在数字信号接收机中,接收到的无线电波信号经过变频后,转换为 I/Q 值,然后对其进行数字信号处理。I/Q 值也用于确定信号的相位和幅度,因此在无线电通信和雷达系统中也广泛使用。原创 2023-09-17 13:57:55 · 16981 阅读 · 2 评论 -
傅里叶变换应用 (01/2):频域和相位
我努力理解傅里叶变换,直到我将这个概念映射到现实世界的直觉上。这是一系列技术性越来越强的解释中的第一篇文章。我希望直觉也能帮助你!原创 2023-09-17 07:28:25 · 6448 阅读 · 0 评论 -
模态分析的概念。C++减振器设计。
模态分析是工程和物理学中用于研究系统或结构动态特性的技术。它涉及分析系统的振动或振荡的自然模式以及相应的频率、阻尼系数和振型。原创 2023-09-11 20:31:49 · 5299 阅读 · 0 评论 -
使用高斯混合模型进行聚类
高斯混合模型 (GMM) 是一种基于概率密度估计的聚类分析技术。它假设数据点是由具有不同均值和方差的多个高斯分布的混合生成的。它可以在某些结果中提供有效的聚类结果。原创 2023-09-06 10:21:01 · 6313 阅读 · 0 评论 -
旅行家问题:TSP 最近邻算法解决方案
TSP是一个NP-hard(非确定性多项式时间hard)问题。没有已知的算法可以解决多项式时间内所有可能的输入。随着城市数量的增加,可能的游览数量呈指数级增长,因此对于大型问题实例,详尽地搜索最佳解决方案在计算上是不可行的。原创 2023-09-05 17:44:32 · 3785 阅读 · 0 评论 -
马尔可夫链蒙特卡罗方法的零数学简介
对于我们中的许多人来说,贝叶斯统计充其量是巫毒魔法,或者最坏的情况是完全主观的胡说八道。在贝叶斯方法的商标中,马尔可夫链蒙特卡洛方法特别神秘。它们肯定是数学繁重且计算昂贵的过程,但它们背后的基本推理,就像数据科学中的许多其他内容一样,可以变得直观。这就是我在这里的目标。原创 2023-08-18 10:07:40 · 3841 阅读 · 0 评论 -
【机器学习】信息熵和信息度量
信息熵是概率论在信息论的应用,它简洁完整,比统计方法更具有计算优势。在机器学习中经常用到信息熵概念,比如决策树、逻辑回归、EM算法等。本文初略介绍一个皮毛,更多细节等展开继续讨论。原创 2023-06-22 21:30:51 · 7698 阅读 · 1 评论 -
【极大似然性】不同函数(均方误差、交叉熵、KL 散度)不同结局(1/2)
很多时候,数据科学家和机器学习从业者并不欣赏不同损失指标之间的数学和直观关系,如负对数似然、交叉熵、最大似然估计、Kullback-Leibler (KL) 散度,以及最重要的均方误差。如果我说KL-散度和均方误差在数学上是相同的,你不会感到惊讶吗?原创 2023-07-31 15:34:25 · 4150 阅读 · 0 评论 -
机器学习:论相关(二)
说明上文【机器学习:论相关(一)】说明了相关在几何学、线性代数、和概率中都提到相似的概念。本文重点讨论在概率系统中,相关的现实意义,以及在时间序列上的应用。五、概率学对相关的表述5.2 期望和方差上文中提到,期望,就是一个概率空间,与一个打分函数的内积。...原创 2022-03-17 22:31:19 · 4619 阅读 · 0 评论 -
【人工智能】距离空间(最基本的数学模型)
纵观人类文明的历史,对事物性质的描述中,既然能用数,就说明有了“量”的概念;既然有了“量”就必然要解决,如何度量?量与量如何比较?这是无法回避的问题,距离空间就是度量空间,是“量”的具体化、关于度量的理论,本文将详细介绍各种度量机制的特点。原创 2023-05-27 14:13:43 · 7969 阅读 · 3 评论 -
【机器学习】 贝叶斯理论的变分推理
贝叶斯原理,站在概率角度上似乎容易解释,但站在函数立场上就不那么容易了;然而,在高端数学模型中,必须要在函数和集合立场上有一套完整的概念,其迭代和运算才能有坚定的理论基础。原创 2023-08-04 19:23:14 · 6559 阅读 · 0 评论 -
使用Python动画粒子的薛定谔波函数(ψ)(完整代码)
物质的双重性质是物理学家中一个著名的概念。原子尺度的物质在某些情况下表现为粒子,而在某些情况下,它们的行为类似于波。为了解释这一点,我们引入了波函数ψ(x,t),它描述的不是粒子的实际位置,而是在给定点找到粒子的概率。波函数ψ(x,t)或概率场,满足一个也许是最重要的偏微分方程,至少对物理学家来说是这样,是薛定谔方程。原创 2023-08-02 17:12:33 · 5024 阅读 · 0 评论 -
【基础理论】了解点过程
在这个世界上,会发生许多事件,其趋势可能遵循一种模式。在这篇博客中,我们试图为这些模式建模奠定基础。例如,在已经发生地震的地区,新地震的可能性通常会增加。这种可能性的增加主要是因为早期地震造成的余震。在一个国家/地区恐慌性抛售股票可能会导致另一个国家/地区发生类似事件。原创 2023-08-02 15:48:44 · 4585 阅读 · 0 评论 -
【基础理论】隐马尔可夫模型及其算法
根据L.R Rabiner等人[1]的说法,隐马尔可夫模型是一个双重嵌入的随机过程,其潜在的随机过程是不可观察的(它是隐藏的),但只能通过另一组产生观察序列的随机过程来观察。基本上,隐马尔可夫模型 (HMM) 是观察一系列排放,但不知道模型生成排放所经历的状态序列的模型。我们分析隐马尔可夫模型,以从观察到的数据中恢复状态序列。听起来很混乱吧原创 2023-07-25 05:17:04 · 6950 阅读 · 0 评论 -
【数据挖掘】时间序列的傅里叶变换:用numpy解释的快速卷积
本篇告诉大家一个高级数学模型,即傅里叶模型的使用;当今,傅里叶变换及其所有变体构成了我们现代世界的基础,为压缩、通信、图像处理等技术提供了动力。我们从根源上理解,从根本上应用,这是值得付出的代价。原创 2023-07-23 11:26:06 · 6002 阅读 · 1 评论 -
【基础理论】隐马尔可夫模型
隐马尔可夫模型是很重要的统计模型,是贝叶斯推断的重要表现形式,也是自然语言处理中必不可少的理论工具。事实上,熟练掌握这种工具具有“黑盒”模型中的都可以使用,本文将用简单案例,配合程序代码讲解这一理论的用法。原创 2023-07-20 07:26:27 · 4059 阅读 · 0 评论 -
【数学建模】为什么存在最优策略?
在进行优化回归过程,首先要看看是否存在最优策略?在有限马尔可夫决策过程(MDP) 中,最优策略被定义为同时最大化所有状态值的策略¹。换句话说,如果存在最优策略,则最大化状态s值的策略与最大化状态 值的策略相同。²但为什么要有这样的政策呢?萨顿和巴托关于强化学习的著名入门书¹认为最优策略的存在是理所当然的,而这个问题没有得到解答。我很难相信他们并能够继续阅读!在本文中,我将证明有限 MDP ³ 中存在最优策略。原创 2023-07-22 13:33:08 · 4771 阅读 · 0 评论 -
【数学建模】相关是一个距离指标吗?
本文探讨最平凡的数学模型--距离模型。我们知道,任何数学模型如果是个距离模型,那么它是:放心的、自动的、不加任意条件的指标项目。然而另一些度量参数不是距离空间,因此,使用起来必须外加若干条件,本文指的相关性就是这种类型的度量。原创 2023-07-22 12:04:07 · 4336 阅读 · 0 评论 -
【基础理论】概率关系的反直觉本质
在回归分析中,如果 y 可以估计为 x 的线性函数并不意味着 x 也可以估计为y的线性函数。如果我们总是根据父亲的身高知道儿子身高的最佳猜测,那么我们对父亲基于儿子身高的猜测会是什么?这真的是难题,本文详细呈述这种问题。原创 2023-07-22 10:55:17 · 3868 阅读 · 0 评论 -
【基础统计学】带重叠差分置信区间的检验
对于统计模式识别,需要从基本的检验入手进行学习掌握,本篇是对统计中存在问题的探讨:如果两个分布有重叠该怎么做。具体的统计学原理,将在本人专栏中系统阐述。原创 2023-07-20 10:52:26 · 4620 阅读 · 0 评论