启动HDFS时报错localhost: Warning: Permanently added ‘localhost‘ (ECDSA)Permission denied

本文通过实践解决Hadoop环境中SSH配置问题,指出未设置无密码登录会导致错误,并提供正确的配置步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
由于本人是新手,网上很多帖子也没看懂。
我按照厦门大学林子雨老师的教程重新装了几遍后发现: 如果配置ssh时没有配置无密码登录,便会出现如上报错,而配成无密码登陆后,便成功了,如下
在这里插入图片描述
解决方法如下:(图片来自于厦门大学数据库实验室的教程在这里插入图片描述
这时在切换回hadoop的安装目录试试吧
希望本文能解决你的问题
特附网址:http://dblab.xmu.edu.cn/blog/2441-2/

<think>好的,我现在需要帮助用户将HDFS中的数据导出到MySQL。首先,用户提供的日志显示他们使用了`start-all.sh`脚本,但系统提示该脚本已弃用,建议改用`start-dfs.sh`和`start-yarn.sh`。这可能意味着用户正在使用较新版本的Hadoop,所以需要注意兼容性问题。 接下来,用户的问题是将HDFS数据导出到MySQL。我需要考虑几种常见的方法。首先想到的是使用Sqoop,因为它是专门为Hadoop和关系数据库之间传输数据设计的工具。Sqoop的`export`命令可以直接将HDFS中的数据导入到MySQL表中。不过,用户需要确保Sqoop已经安装,并且MySQL的JDBC驱动已经配置好。另外,还需要确认目标表的结构与HDFS中的数据格式匹配,比如字段分隔符是否正确,列的顺序是否一致。 另一种方法是使用Hadoop的MapReduce作业或者Spark来处理数据,然后通过JDBC直接写入MySQL。这种方法适合需要进行复杂数据处理的情况,但需要编写代码,可能对用户来说步骤更多,尤其是如果他们对编程不太熟悉的话。 还可能用到Apache Hive,先将HDFS数据映射为Hive表,再通过HQL导出到MySQL。不过这也需要额外的配置,比如使用Hive的JDBC连接或者导出工具。 接下来需要考虑用户的具体情况。用户提供的日志中有关于启动Hadoop和YARN的步骤,说明他们的集群已经运行起来了。可能需要检查Sqoop的可用性。如果用户没有安装Sqoop,可能需要指导他们安装,或者寻找替代方法。 另外,数据格式的问题也很重要。HDFS中的数据可能是文本文件、CSV、JSON等格式,导出到MySQL需要对应正确的表结构和数据类型。如果数据中有分隔符,比如逗号或制表符,Sqoop命令中需要指定正确的分隔符参数。 还需要注意MySQL的连接信息,包括URL、用户名、密码,以及是否有权限写入目标数据库。用户可能需要提前在MySQL中创建好表,确保字段匹配。 可能的错误点包括:Sqoop未正确配置MySQL驱动,导致连接失败;字段数量或类型不匹配;权限问题;网络连接问题导致无法访问MySQL服务等。需要提醒用户检查这些方面,并提供相应的解决建议。 总结步骤的话,应该先推荐使用Sqoop,给出具体的命令示例,并详细说明每个参数的作用。然后,如果用户无法使用Sqoop,再提供备选方案,比如使用自定义的Java程序或者Spark作业。同,强调数据格式和MySQL表结构的一致性,以及必要的配置步骤,如驱动安装和权限设置。 最后,确保回答结构清晰,分步骤说明,并指出可能遇到的问题和解决方法,帮助用户顺利完成导出任务。</think>我们将分步骤说明如何将HDFS数据导出到MySQL数据库,以下是技术实现的关键流程: --- ### 一、先决条件检查 1. 确保Hadoop集群已启动(根据日志可见HDFS/YARN已正常启动) 2. 确认MySQL服务已运行且允许远程连接(若在不同节点) 3. 准备以下信息: - MySQL连接地址:$jdbc:mysql://hostname:port/database$ - 数据库用户名和密码 - 目标表结构定义(字段类型需与HDFS数据对应) --- ### 二、推荐方案:使用Sqoop导出(首选) #### 步骤1:安装配置Sqoop ```bash # 验证Sqoop是否可用 sqoop version # 将MySQL驱动拷贝至Sqoop的lib目录 cp mysql-connector-java-x.x.x.jar $SQOOP_HOME/lib/ ``` #### 步骤2:执行数据导出 ```bash sqoop export \ --connect jdbc:mysql://localhost:3306/your_database \ --username your_username \ --password your_password \ --table target_table \ --export-dir /hdfs/path/to/data \ --input-fields-terminated-by ',' # 根据实际数据分隔符调整 ``` #### 参数详解: - `--export-dir`:指定HDFS源数据路径 - `--input-fields-terminated-by`:定义HDFS数据列分隔符 - `--input-lines-terminated-by`:可选,定义行分隔符(默认为`\n`) --- ### 三、替代方案:使用Hive中转 #### 步骤1:创建Hive外部表 ```sql CREATE EXTERNAL TABLE hdfs_data( col1 INT, col2 STRING ) ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' LOCATION '/hdfs/path/to/data'; ``` #### 步骤2:使用HQL导出数据 ```bash # 通过Hive JDBC连接执行导出 beeline -u jdbc:hive2://localhost:10000 \ -e "INSERT OVERWRITE DIRECTORY 'file:///tmp/mysql_export' SELECT * FROM hdfs_data;" # 使用mysqlimport工具导入 mysqlimport --local --user=your_user --password \ --fields-terminated-by=',' your_database /tmp/mysql_export/* ``` --- ### 四、常见问题排查 1. **权限问题**: - 确认MySQL用户拥有`INSERT`权限 - 检查HDFS路径访问权限:`hdfs dfs -ls /your/path` 2. **数据格式不匹配**: - 使用`--input-optionally-enclosed-by`处理带引号字段 - 通过`--columns`指定字段映射顺序(当表字段与文件列顺序不一致) 3. **连接失败**: ```bash # 测试MySQL连通性 telnet mysql_host 3306 # 验证驱动版本兼容性(推荐使用MySQL Connector/J 8.x) ``` --- ### 五、进阶技巧 1. **增量导出**: ```bash sqoop export \ --update-key id_column \ # 指定主键列 --update-mode allowinsert # 允许upsert操作 ``` 2. **性能优化**: ```bash -m 8 \ # 增加并行度 --batch # 启用批处理模式 ``` 3. **数据转换**: ```bash --input-null-string '\\N' \ # 处理空值 --input-null-non-string '\\N' ``` --- 通过以上方法,您可以根据具体场景选择最适合的数据导出策略。建议优先使用Sqoop工具,其在处理大数据量传输具有更好的性能表现和错误处理机制。如果遇到特殊格式要求,可结合MapReduce预处理后再执行导出。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值