反卷积方法----抑制棋盘伪影:Deconvolution and Checkerboard Artifacts

本文探讨了卷积神经网络中出现的棋盘伪影问题,分析了其产生的原因,包括卷积核大小与步长不整除的情况。提出了两种抑制棋盘伪影的方法:确保卷积核大小能被步长整除,以及先进行上采样(如最邻近插值)再进行卷积。这两种方法旨在减少模型输出的伪影,提高图像重建质量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Deconvolution and Checkerboard Artifacts的理解

打字讲的有点不清楚,有空录个视频讲:D

1. 什么是棋盘伪影

以下是计算机生成的图像放大后的样子。
棋盘伪影

像这样明暗相间的格子就是棋盘格。
在这里插入图片描述

但是正常图像是没有这种现象的,如果你用的是Mac,可以用电脑自带的数码测色计试试。

2. 棋盘伪影原因

反卷积的时候:卷积核 % 步长 不等于0(具体解释可以看原论文解释)
比如:

不整除情况

3 % 2 = 1
在这里插入图片描述

整除情况

2 % 2 &#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值