yolov3用python接口检测并保存视频

yolov3用python接口检测并保存视频

本文直接修改darknet下python目录内的darknet.py来完成视频的检测与保存。在看本文章之前,请按照如下链接完成相关文件修改。
https://blog.csdn.net/phinoo/article/details/83009061
修改完之后确保可以运行没问题,修改darknet.py文件的main函数,下面把代码贴上。注意在抬头加上import cv2,里面关于路径的都修改为自己文件所在的路径。我用的是opencv3.4.6,因为保存视频的接口是opencv3的,注意下。

if __name__ == "__main__":
    net = load_net("../cfg/yolov3.cfg", "../backup/yolov3.weights", 0)
    meta = load_meta("../cfg/coco.data")
    vid = cv2.VideoCapture('../video/input2.avi')
    fourcc = cv2.VideoWriter_fourcc('M','P','4','2') #opencv3.0
    videoWriter = cv2.VideoWriter('../video/output2.avi', fourcc, 25, (1920,1080))
    while True:
        return_value,arr=vid.read()
        if not return_value:
            break 
        im=nparray_to_image(arr)
        boxes= detect(net, meta, im)
       
        for i in range(len(boxes)):
            score=boxes[i][1]
            label=boxes[i][0]
            xmin=boxes[i][2][0]-boxes[i][2][2]/2
            ymin=boxes[i][2][1]-boxes[i][2][3]/2
            xmax=boxes[i][2][0]+boxes[i][2][2]/2
            ymax=boxes[i][2][1]+boxes[i][2][3]/2
            cv2.rectangle(arr,(int(xmin),int(ymin)),(int(xmax),int(ymax)),(0,255,0),2)
            cv2.putText(arr,str(label),(int(xmin),int(ymin)),fontFace=cv2.FONT_HERSHEY_SIMPLEX,fontScale=0.8,color=(0,255,255),thickness=2)    
        cv2.imshow("Canvas", arr)
        videoWriter.write(arr) 
        cv2.waitKey(1) 
    cv2.destroyAllWindows()

用自带的darknet.py检测视频会比直接运行源程序速度慢一点,但是可以接受。

告知:需要学习YOLOv4进行TT100K数据集上中国交通标志识别的学员请前往(1) Ubuntu系统《YOLOv4目标检测实战:中国交通标志识别》课程链接:https://edu.csdn.net/course/detail/29362(2)《Windows版YOLOv4目标检测实战:中国交通标志识别》课程链接:https://edu.csdn.net/course/detail/29363在无驾驶中,交通标志识别是一项重要的任务。本课程中的项目以美国交通标志数据集LISA为训练对象,采用YOLOv3目标检测方法实现实时交通标志识别。具体项目过程包括包括:安装Darknet、下载LISA交通标志数据集、数据集格式转换、修改配置文件、训练LISA数据集、测试训练出的网络模型、性能统计(mAP计算和画出PR曲线)和先验框聚类。YOLOv3基于深度学习,可以实时地进行端到端的目标检测,以速度快见长。本课程将手把手地教大家使用YOLOv3实现交通标志的多目标检测。本课程的YOLOv3使用Darknet,在Ubuntu系统上做项目演示。 Darknet是使用C语言实现的轻型开源深度学习框架,依赖少,可移植性好,值得深入学习和探究。除本课程《YOLOv3目标检测实战:交通标志识别》外,本推出了有关YOLOv3目标检测的系列课程,请持续关注该系列的其它课程视频,包括:《YOLOv3目标检测实战:训练自己的数据集》《YOLOv3目标检测:原理与源码解析》《YOLOv3目标检测:网络模型改进方法》另一门课程《YOLOv3目标检测实战:训练自己的数据集》主要是介绍如何训练自己标注的数据集。而本课程的区别主要在于学习对已标注数据集的格式转换,即把LISA数据集从csv格式转换成YOLOv3所需要的PASCAL VOC格式和YOLO格式。本课程提供数据集格式转换的Python代码。请大家关注以上课程,选择学习。下图是使用YOLOv3进行交通标志识别的测试结果
评论 28
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

greatsam

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值