【AAAI 2019】LDES方法/NSAMF方法 配置和调试

[2019/3/19] 配置LDES

上次组会提到一个AAAI2019的会议论文,相关滤波方法做到了旋转矩形框,感觉很惊艳。
今天翻了下论文,看到作者用I7CPU跑到20FPS+,不禁拿来试一试。

@InProceedings{Li2019ldes,
author = {Li, Yang and Zhu, Jianke and Hoi, Steven C.H. and Song, Wenjie and Wang, Zhefeng and Liu, Hantang},
title = {Robust Estimation of Similarity Transformation for Visual Object Tracking},
booktitle = {The Conference on Association for the Advancement of Artificial Intelligence (AAAI)},
month = {January},
year = {2019}
}

本文的主要方法是:在Staple和KCF的基础上,添加一个对数变换(主要借鉴了傅里叶-梅林配准方法,对数极坐标变换后将旋转缩放等价变换为位移,并利用相位相关求解。)分支,在代码中以0.85位移+0.15旋转缩放的权重线性计算出score。

经过一系列编译mex相对熟悉的坑,跑出来VOT2016的结果
在这里插入图片描述
平均FPS达到将近7,EAO虽然不高,但是已经超出了我的想象了.(忽略ECO的FPS,数据有问题)
给出测试平台:I5-6500@3.2GHz,8G RAM,MATLAB 2016b,(mex文件编译:opencv2.4.9+vs2015)

在这里插入图片描述
跟踪器虽然支持旋转矩形框,但是这个明显没有跟上旋转的速度。
在这里插入图片描述
在这里插入图片描述
丢失的原因基本确定为HC的特征不够强大,形状和颜色区分都不明显。
在这里插入图片描述
还是特征。

总体来说,跟踪器算法巧妙,若能有更加强大的特征提取作为“眼睛”肯定能够取得更好的效果。

[2019/3/22] 调整HOG特征和颜色直方图权重

观察样例Blot2视频的时候,有尝试改大颜色直方图的权重,然后滤波器就从博尔特身上飘到了垃圾桶上面。再改回0.4的权重,漂移情况得到改善。但是将权重调低,又会漂移到博尔特旁边的选手身上,就是说HOG特征对同类相似物体的区分很弱。
下面给出原方法的权重公式
S c o r e r e s p o n s e = ( 1 − λ ) ∗ S c o r e c f + λ ∗ S c o r e c o l o r Score_{response} =(1-\lambda)*Score_{cf}+\lambda *Score_{color} Scoreresponse=(1λ)Scorecf+λScorecolor
文中 λ = 0.4 \lambda=0.4 λ=0.4.
所以考虑让权重在一定范围内变动,但是仍然在0.6,0.4附近,重新形式化定义这个问题:
S c o r e r e s p o n s e = [ θ ( 1 − λ ) + α ( 1 − θ ) ] S c o r e c f + ( λ θ + ( 1 − θ ) ( 1 − α ) ) S c o r e c o l o r Score_{response} =[\theta (1-\lambda) +\alpha (1-\theta)]Score_{cf}+(\lambda\theta +(1-\theta)(1-\alpha)) Score_{color} Scoreresponse=[θ(1λ)+α(1θ)]Scorecf+(λθ+(1θ)(1α))Scorecolor

尝试令 θ = 0.8 \theta=0.8 θ=0.8,所以相当于允许 S c o r e c f Score_{cf} Scorecf权重在 0.48 − 0.68 0.48-0.68 0.480.68间变动, S c o r e c o l o r Score_{color} Scorecolor权重在 0.52 − 0.32 0.52-0.32 0.520.32间变动.
那么现在的问题就是动态确定线性参数 α \alpha α的值

所以想到了martin danelljan大神参与的在ECCV2018发布的UPDT方法中关于置信度的论述,UPDT方法中的置信度是对于两个相近波峰一些比值,与波峰高度和次高峰的位置有关。

然后代码就写错了… 代码写成了最高点和次高点的…
但是出乎意料的结果没有变差,精确度,鲁棒性以及EAO都提升了0.4%左右,所以为什么呢?

代码中置信分数写成了
Z c f = M a x ( r e s p s o n s e ) − M a x 2 n d ( r e s p s o n s e ) ( x 1 − x 2 ) 2 + ( y 1 − y 2 ) 2 Z_{cf} = \frac {Max(respsonse)-Max2nd(respsonse)}{(x_1-x_2)^2+(y_1-y_2)^2} Zcf=(x1x2)2+(y1y2)2Max(respsonse)Max2nd(respsonse)
所以其实所谓的次高峰,很有可能还处于主峰中,所以上述式子实际上是求这个峰顶端的近似斜率,也就是峰的陡峭程度。UPDT中关于导数部分的内容恰好能解释效果提升的原因,就是因为斜率更大的峰函数质量更高,定位更清晰准确。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值