波斯元音识别与神经细胞轴突生理行为模拟
波斯元音识别
在语音识别领域,波斯元音识别是一个具有挑战性的任务。传统方法在处理波斯元音识别时效果不佳,尤其是在低对比度图像中自动提取嘴唇区域,这对于元音识别至关重要。为了解决这些问题,研究人员提出了一种结合 Haar 小波和神经网络的方法。
嘴唇区域提取
- 颜色空间处理 :利用小波跨越 CIEL U V 和 CIEL a b 颜色空间的 ‹a› 和 u 分量,对图像进行处理。在实验中,单独使用 a 和 u 效果较差,而并行使用 a 和 u* 效果有所提升,将它们求和得到的结果最佳。
- 二维 Haar 小波变换 :进行二维 Haar 小波变换和乘积运算,得到四个不同的矩阵(dA, dH, dV, dD)。由于 dA 矩阵足以用于嘴唇区域提取,因此丢弃其他三个矩阵(dH, dV, dD)。
- 形态学滤波 :使用 8 - 邻域矩形结构元素进行灰度形态学闭运算和开运算,以平滑隶属度图并消除小的错误斑点和孔洞。
- 后处理 :将上一步的输出转换为二值图像。具体步骤如下:
- 扫描所有图像像素,为非零像素分配初步标签,并将标签等价关系记录在并查集表中。
- 使用并查集算法解决等价类问题,可靠像素基于已解决的等价类确定。