基于神经网络和随机求解器的Painlevé I方程数值处理
1. 引言
Painlevé超越方程因其奇点特性在研究界备受关注,其解在纯数学、应用数学和理论物理等领域都有出现,在应用科学和工程中也有众多应用。对于Painlevé I方程,其形式为:
[
\frac{d^{2}y(t)}{dt^{2}} = 6[y(t)]^{2}+t
]
初始条件为:
[
y(0) = 0, \frac{dy(0)}{dt} = 1
]
该方程的精确解未知,但已有一些作者得出了近似解析解。传统的解析求解方法如Adomian分解法、变分迭代法和同伦摄动法等,以无穷级数形式给出解,结果的精度取决于近似解所用的项数。而人工神经网络适用于处理非线性和奇点问题,近年来不仅用于求解常微分方程,还用于求解分数阶微分方程。因此,本文尝试用神经网络建模来求解Painlevé方程,并结合现代随机求解器训练网络权重。
具体而言,本文使用遗传算法(GA)作为全局优化器,与内点算法(IPA)结合进行快速局部搜索,同时也使用模拟退火和模式搜索技术与IPA结合来学习权重。通过统计分析验证方案的可靠性和有效性,并与标准解析求解器进行结果比较。
2. 神经网络数学模型
采用前馈人工神经网络(ANN)为Painlevé I方程建立数学模型,网络架构使用对数Sigmoid作为激活函数。前馈神经网络可作为通用逼近函数,能很好地逼近紧集上的任何连续函数及其任意阶导数。对于该方程,使用以下连续映射来表示解(y(t))、其一阶导数(\frac{dy}{dt})和二阶导数(\frac{d^{2}y}{dt^{2}}):
[