工业4.0中机器学习在活动识别中的潜力揭示
在工业4.0的背景下,人工智能(AI)和机器学习(ML)在活动识别(AR)和人类活动识别(HAR)领域展现出了巨大的潜力。本文将深入探讨相关的先进方法,以及它们在工业环境中的应用和影响。
1. 背景知识
1.1 机器学习
机器学习起源于20世纪50年代,是人工智能的一个分支,旨在创建能够自主学习、无需明确编程的计算机系统。电子计算器和计算能力的进步,使得模式识别系统的实际应用成为可能,主要专注于对文本、图像和声音等嘈杂数据集中独特模式的概率判别。
随着时间的推移,机器学习发展成为一个跨学科的研究领域,涵盖了基于传感器和基于视频的识别系统。通过引入先进且计算要求高的技术,原始的统计方法得到了增强,能够对大规模数据集中的复杂模式进行实时分析。
如今,机器学习方法大致可分为两类:
- 监督学习 :需要人类专家提供初始知识,包括支持向量回归、决策树、集成方法和神经网络等回归和分类技术。
- 无监督学习 :让机器自行重建数据的固有结构,如层次聚类和K - 均值等聚类技术,以及用于识别不同数据项之间关系的关联技术。
1.2 人类活动识别
1.2.1 HAR与ML
在HAR领域,主要目标是利用多种传感器收集的数据来识别和分类人类活动。这些传感器常见的有加速度计、陀螺仪、磁力计等,通常集成在智能手机、智能手表或可穿戴健身追踪器中,用于记录人体在一段时间内的运动和方向信息。
为了提高AR的准确性,收集的数据通常会经过噪声过滤、特征