人体活动识别:趋势与挑战
1. 引言
利用智能手机和智能手表等智能设备对人体活动进行在线监测和可靠识别,在物联网(IoT)应用中备受关注,如智能家居、健康诊断、健身追踪、医疗康复、环境辅助生活、老年护理和智能医疗等。据相关数据,到2050年,全球老年人口预计将达20亿。老年人往往患有多种疾病,需要特别关注,而医生与患者的比例为1:1800。因此,实时监测老年人的日常活动,对智能医疗至关重要,能有效促进医疗康复和老年护理。同时,日常生活方式对多种重大疾病有显著影响,所以监测日常身体活动是重要的健康指标。
近年来,监测老年人独立生活以及心脏和神经相关患者的康复情况,成为监测日常生活身体活动模式的热门领域。人体活动识别(HAR)因其在个性化医疗、老年护理、智能家居、运动追踪和机器人等实际应用中的广泛适用性,成为极具吸引力的研究课题。例如,智能医疗通过各种物联网设备,将医疗从业者与患者连接起来,实现实时监测和医疗管理。智能设备内置的加速度计和陀螺仪等传感器,是智能医疗中捕捉和记录人体活动数据的基本物联网方法。
然而,开发在线和实时的HAR应用是一项复杂的任务。需要处理来自不同数据源的异构数据,这些数据具有不同的维度和特征,分析过程也涉及多个任务,面临诸多挑战。此外,解决传感器位置、不同传感器架构以及个体活动差异等问题,在HAR领域也颇具挑战性。虽然基于深度学习的HAR系统因自动特征学习的特性而受到欢迎,但它们可能难以区分相似的活动,如步行和上楼,且计算复杂、数据需求大,不适合内存和计算能力有限的物联网设备。
2. HAR中数据相关的趋势与挑战
2.1 基于传感器的HAR
在物联网环境中,多种传感器用于收集HAR数据,各有