以下是一个基于QuantConnect的强化学习多因子选股策略示例,结合了基本面因子和价格动量因子,并采用简化版Q-learning算法进行决策:
```python
from AlgorithmImports import *
import numpy as np
import pandas as pd
from sklearn.preprocessing import StandardScaler
class RLMultiFactorStockSelection(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2015, 1, 1)
self.SetEndDate(2020, 1, 1)
self.SetCash(100000)
# 初始化参数
self.lookback = 60 # 回看周期
self.rebalance_days = 30 # 调仓周期
self.num_stocks = 20 # 持仓股票数量
self.last_rebalance = None
# 初始化强化学习参数
self.alpha = 0.1 # 学习率
self.gamma = 0.9 # 折扣因子
self.epsilon = 0.2 # 探索概率
self.q_table = {} # 简化版Q表
# 添加股票池
self.UniverseSettings.Resolution = Resolution.Daily
self.AddUniverse(self.CoarseSelectionFunction)
# 存储数据
self.data_dict = {}
self.factors = ['PE', 'PB', 'ROE', 'MOMENTUM'] # 使用的因子
# 初始化标准化器
self.scaler = StandardScaler()
def CoarseSelectionFunction(self, coarse):
# 筛选流动性好的股票
selected = [x for x in coarse if x.HasFundamentalData and x.Price > 5]
return [x.Symbol for x in sorted(selected,