基于QuantConnect写一个强化学习多因子选股交易策略

以下是一个基于QuantConnect的强化学习多因子选股策略示例,结合了基本面因子和价格动量因子,并采用简化版Q-learning算法进行决策:

```python
from AlgorithmImports import *
import numpy as np
import pandas as pd
from sklearn.preprocessing import StandardScaler

class RLMultiFactorStockSelection(QCAlgorithm):

    def Initialize(self):
        self.SetStartDate(2015, 1, 1)
        self.SetEndDate(2020, 1, 1)
        self.SetCash(100000)
        
        # 初始化参数
        self.lookback = 60  # 回看周期
        self.rebalance_days = 30  # 调仓周期
        self.num_stocks = 20  # 持仓股票数量
        self.last_rebalance = None
        
        # 初始化强化学习参数
        self.alpha = 0.1  # 学习率
        self.gamma = 0.9  # 折扣因子
        self.epsilon = 0.2  # 探索概率
        self.q_table = {}  # 简化版Q表
        
        # 添加股票池
        self.UniverseSettings.Resolution = Resolution.Daily
        self.AddUniverse(self.CoarseSelectionFunction)
        
        # 存储数据
        self.data_dict = {}
        self.factors = ['PE', 'PB', 'ROE', 'MOMENTUM']  # 使用的因子
        
        # 初始化标准化器
        self.scaler = StandardScaler()

    def CoarseSelectionFunction(self, coarse):
        # 筛选流动性好的股票
        selected = [x for x in coarse if x.HasFundamentalData and x.Price > 5]
        return [x.Symbol for x in sorted(selected, 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值