安装步骤
一、安装anaconda
前期需要安装python环境,我用的是anaconda,方便且自带pip
在清华镜像站找到Anaconda3-2019.10-Linux-x86_64.sh,我选的是最新版的
下载链接
打开这个文件所在的文件夹的终端
bash Anaconda3-2019.10-Linux-x86_64.sh
source ~/.bashrc #更新配置
没有用sudo是因为在此前安装的时候采用了sudo,导致之后创建虚拟环境无写入权限,所以就没有用sudo了,暂时还没有什么问题
测试是否安装成功
在终端输入python或者python3,若出现相关信息提示就代表安装成功。(有可能因为P大小写问题而结果不同)
二、安装Tensorflow-gpu
0.更换下载源
提前将下载源换成国内源,例如阿里源、清华源。
我选的是阿里源,挺方便的,直接复制粘贴就行了,因为之后使用的是pip安装,所以先让我们修改一下pip.conf的内容,这就涉及到隐藏文件了。
一般.conf文件会出现在根目录下的/.config/隐藏文件夹内,而我们要找的pip.conf就在其中,怎么打开隐藏文件夹就不多说了(ctrl+H),
在pip.conf所在的文件夹打开终端
然后将文本内容全部清除,将阿里源提供的内容粘贴进去
将配置方法b.的内容粘贴进去
这样就更换好了国内源。
1.安装Tensorflow-gpu
激活你为安装tensorflow准备的python环境
conda activate TensorFlow-gpu #将TensorFlow-gpu替换成你创建的环境名称
在这个情况下,直接pip install 是无法安装的,会提示你找不到pip这个命令,那么要去哪里找anaconda的pip包呢?一般会在你安装的anaconda的目录下的bin文件夹内。
这样就能开始安装了,且下载速度正常。
其实到这里Tensorflow-gpu的安装就已经结束了,以下是额外的内容
2.为Tensorflow环境创建Jupyter Notebook Kernel
anaconda自带jupyter
1).conda install ipykernel -y
2).python -m ipykernel install --user --name Tensorflow-gpu --display-name “TensorFlow-GPU”
3).检测是否安装成功
在终端输入jupyter notebook
注意要先打开conda环境,也就是前面几步你所使用的,它会显示在你的用户名前
如果在jupyter界面新建的时候能看到你刚才重新命名的环境就代表成功了。