ollama部署deepseek实操记录

1. 安装 ollama

1.1 下载并安装

官网 https://ollama.com/

Linux安装命令  https://ollama.com/download/linux


curl -fsSL https://ollama.com/install.sh | sh

安装成功截图

3. 开放外网访问

1、首先停止ollama服务:systemctl stop ollama
2、修改ollama的service文件:/etc/systemd/system/ollama.service
在[Service]下边增加一行:Environment="OLLAMA_HOST=0.0.0.0:8080",端口根据实际情况修改
3、重载daemon文件 systemctl daemon-reload
4、启动ollama服务 systemctl start ollama

Ollama在windows环境中如何支持通过IP来访问接口
1、首先停止ollama服务的允许。由于windows下安装的ollama不是一个标准的windows service,所以只能直接杀掉两个ollama进程。
2、为当前windows系统添加环境变量:电脑-属性-高级系统设置-环境变量
变量:OLLAMA_HOST,值:0.0.0.0:11434
3、关掉已打开的命令行窗口,打开新命令行,用ollama serve或者ollama start来启动ollama服务,此时ollama服务在启动时将读取环境变量中的OLLAMA_HOST,支持IP端口访问

4. 修改模型存储位置

Windows环境

环境变量-系统变量-新建

变量名:OLLAMA_MODELS

变量值:D:\Ollama

Linux环境默认存储路径为: /usr/share/ollama/.ollama/models


假如我要将下载存储路径修改为 /data/ollama

#步骤一:创建目录 sudo mkdir /data/ollama
 
#步骤二:将目标路径的所属用户和组改为root
sudo chown -R ollama:ollama /data/ollama
 
#步骤三:将其文件权限更换为777
sudo chmod -R 777 /data/ollama
 
#步骤四:打开ollama.service文件
sudo vi /etc/systemd/system/ollama.service
 
#步骤五:进行修改并添加环境(注意路径要改成自己设置的, 其它的默认, 此处仅添加了 Environment="OLLAMA_MODELS=/data/ollama"
Environment="OLLAMA_HOST=0.0.0.0:11434")
[Unit]
Description=Ollama Service
After=network-online.target

[Service]
ExecStart=/usr/local/bin/ollama serve
User=ollama
Group=ollama
Restart=always
RestartSec=3
Environment="PATH=/home/hum/.local/bin:/home/hum/anaconda3/bin:/home/hum/anaconda3/condabin:/home/hum/anaconda3/bin:/usr/local/sbin:/usr/local/bi
n:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin"
Environment="OLLAMA_MODELS=/data/ollama"
Environment="OLLAMA_HOST=0.0.0.0:11434"

[Install]
WantedBy=default.target

#步骤六:

重载daemon文件 sudo systemctl daemon-reload
启动ollama服务 sudo systemctl start ollama

2. 部署deepseek模型   deepseek-r1:1.5b

 ollama run deepseek-r1:1.5b

显得比较弱

3. 本地部署 chatbox 接入 ollama

Chatbox AI: Your AI Copilot, Best AI Client on any device, Free Download

4. 使用

5. 后台进程将其它几个版本下载下来

cd /data/ollama

nohup ollama pull deepseek-r1:671b > d0.log 2>&1 &



nohup ollama pull deepseek-r1:14b > d14.log 2>&1 &



nohup ollama pull deepseek-r1:32b > d32.log 2>&1 &


nohup ollama pull deepseek-r1:70b > d70.log 2>&1 &

<think>好的,用户想要了解DeepSeek R1模型源码部署Ollama部署的区别。首先我需要明确这两个部署方式各自的特点和适用场景。 首先,我需要回想一下DeepSeek R1的相关信息。可能它是一个特定公司或团队开发的语言模型,源码部署意味着用户需要从源代码开始构建和配置环境。这可能包括下载代码库、安装依赖项、配置参数、处理硬件兼容性等问题。对于源码部署,用户通常需要有一定的技术背景,能够处理可能出现的编译错误或依赖冲突。另外,源码部署可能更灵活,允许用户自定义模型参数或调整架构,适合需要深度定制的情况。 然后是Ollama,这是一个我比较熟悉的工具,它主要用于本地运行大型语言模型,简化了部署流程。Ollama通常是预编译的,用户只需几条命令就能下载和运行模型,无需处理复杂的依赖关系或配置。它可能支持跨平台,自动处理GPU加速,适合希望快速上手、专注于应用开发的用户。但灵活性可能不如源码部署,用户受限于Ollama提供的功能和接口。 接下来,我需要比较两者的区别。可能从部署流程、技术要求、灵活性、适用场景等方面展开。比如源码部署步骤多,技术要求高,但灵活;Ollama一键部署,简单快捷,但定制性差。同时,资源管理方面,Ollama可能优化得更好,自动利用硬件加速,而源码部署可能需要用户手动配置CUDA、并行处理等。 还要考虑用户的际需求。如果用户是研究人员或开发者,需要修改模型结构或训练方式,源码部署更合适。如果是普通用户或想快速集成模型功能,Ollama更适合。此外,维护和更新方面,Ollama可能自动更新模型版本,而源码部署需要用户自己跟进代码库的更新。 需要确认是否有遗漏的方面,比如安全性、社区支持、文档完善程度等。源码部署可能依赖项目方的文档和支持,而Ollama作为成熟工具可能有更完善的社区和问题解决方案。 最后,组织这些点,用中文清晰、分点回答,确保用户能理解两者的区别和适用情况。避免使用专业术语过多,保持口语化,结构层次分明。</think>DeepSeek R1模型源码部署Ollama部署的核心区别主要体现在**技术门槛、灵活性和使用场景**上,具体差异如下: --- ### 一、部署方式对比 | **维度** | **DeepSeek R1源码部署** | **Ollama部署** | |-------------------|---------------------------------------|-------------------------------------| | **技术门槛** | 需熟悉Python/PyTorch,手动处理依赖和环境 | 一键命令完成,无需编程基础 | | **流程复杂度** | 需编译代码、配置GPU/CUDA、调试兼容性问题 | 自动下载预编译模型,开箱即用 | | **硬件适配** | 需手动优化GPU/CPU资源分配 | 自动启用GPU加速(如NVIDIA显卡) | --- ### 二、核心区别解析 1. **技术控制权** - **源码部署**: 完全掌握模型架构,可修改底层代码(如调整模型层数、修改注意力机制),适合科研或定制化需求。 *例如:可自行现混合精度训练或量化压缩。* - **Ollama**: 以“黑盒”形式运行,仅能通过API调用预定义功能,适合快速应用开发。 2. **资源占用** - **源码部署**: 需自行优化内存管理和计算并行化,对显存要求更高(如需手动设置`batch_size`和梯度累积)。 *典型问题:可能遇到OOM(内存溢出)需反复调试。* - **Ollama**: 内置资源优化策略(如动态显存分配),自动平衡计算负载。 3. **生态支持** - **源码部署**: 依赖开源社区文档,需自行解决版本冲突(如PyTorch与CUDA版本匹配)。 *案例:安装`apex`库时可能需手动编译。* - **Ollama**: 提供统一模型仓库(如直接拉取`deepseek-r1:7b-q4`版本),内置依赖隔离机制。 --- ### 三、典型场景建议 - **选源码部署**: ✅ 需要修改模型架构(如添加Adapter模块) ✅ 学术研究需复现训练细节 ✅ 企业级私有化部署(需安全审计代码) - **选Ollama**: ✅ 快速验证模型基础能力 ✅ 个人开发者构建AI应用原型 ✅ 多模型AB测试(支持同时加载多个模型) --- ### 四、成本示例 - **源码部署**可能遇到的典型问题: ```bash # 常见报错示例 RuntimeError: CUDA out of memory. # 需手动调整batch_size或使用梯度检查点 ``` - **Ollama**的标准化流程: ```bash ollama run deepseek-r1 # 直接进入交互式对话 ``` 选择时需权衡**开发成本**与**定制需求**,技术团队优先源码部署,个人用户推荐Ollama
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值