用 LangChain + GPT 构建自动合成数据 Agent:模块拆解与实现思路全解析

目录

用 LangChain + GPT 构建自动合成数据 Agent:模块拆解与实现思路全解析

一、项目目标:自动构建训练数据,不再靠人

✅ 示例目标场景:

二、系统总览架构(建议画成流程图)

三、模块拆解与代码思路

✅ 1. 任务理解模块

✅ 2. Prompt构建器模块

✅ 3. 多轮生成器模块

✅ 4. 样本质量控制模块

✅ 5. 输出模块(本地/云)

四、进阶能力:让Agent更智能!

五、可视化与迭代界面建议

六、部署建议与调度框架

七、结语


用 LangChain + GPT 构建自动合成数据 Agent:模块拆解与实现思路全解析

随着 AIGC 能力提升,“手动写 Prompt 生数据”的方式已越来越难以满足高效合成数据的需求。我们需要让 AI 像人一样,自动规划、执行、生成、评估数据

这正是 LangChain + GPT 构建的数据合成 Agent 的核心目标:

🤖「给定一个任务目标,我能自动设定生成内容、调用大模型生成样本、判断效果是否合格,并循环优化,直到你满意为止。」


一、项目目标:自动构建训练数据,不再靠人

✅ 示例目标场景:
  • 医疗对话数据合成

  • 多轮问答任务生成训练对

  • 文本分类 / 情感分析伪样本生成

  • 面向知识图谱的实体/关系对合成

  • 图文对数据合成 + TTS语音生成


二、系统总览架构(建议画成流程图)

用户输入任务描述/需求
        ↓
数据合成Agent 启动(LangChain)
        ↓
【任务理解模块】→ 识别任务类型/格式/标签空间
        ↓
【Prompt构建器】→ 构建多样化生成指令
        ↓
【模型调用模块】→ GPT / Claude / 自部署模型生成样本
        ↓
【样本评估器】→ 自动筛选、打分、去重、格式化
        ↓
【输出JSON/CSV/训练集】

三、模块拆解与代码思路

✅ 1. 任务理解模块

功能:判断用户输入是分类/问答/摘要/对话类,并提取关键信息

from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate

template = "以下是一个数据生成任务,请分析其目标并输出类型及标签:\n\n{input}\n\n任务类型:"
chain = LLMChain(llm=ChatOpenAI(), prompt=PromptTemplate.from_template(template))
result = chain.run("我想构建一个情感分类的数据集,包含正向和负向的评论")
# 输出:任务类型:文本分类;标签:正向,负向

✅ 2. Prompt构建器模块

功能:根据任务类型,动态生成数据合成用的 Prompt 模板。

prompt = f"""
请生成一条情感分类训练样本,要求如下:
- 评论内容尽量真实自然
- 标签为“正向”或“负向”
- 返回格式为JSON
"""

# 多样化技巧:加入风格变化/产品种类

✅ 3. 多轮生成器模块

功能:批量并发生成多条数据,并格式化为结构化输出

from langchain.agents import initialize_agent, Tool
from langchain.tools import tool

@tool
def generate_example(prompt):
    return ChatOpenAI().call(prompt).content

agent = initialize_agent([Tool(name="generator", func=generate_example)], llm=ChatOpenAI())
results = [agent.run(prompt) for _ in range(50)]  # 批量生成

✅ 4. 样本质量控制模块

功能:判断样本是否语义通顺、结构正确、标签准确

  • 可以使用 GPT 来做 JSON 格式检查 + 数据合理性检查

  • 或用自定义规则+regex过滤无效样本

def is_valid_sample(sample: str):
    return sample.startswith('{') and '"label":' in sample and len(sample) < 500

filtered = [s for s in results if is_valid_sample(s)]

✅ 5. 输出模块(本地/云)
  • 输出为 .jsonl, .csv, .txt

  • 或保存为 HuggingFace DatasetDict 格式用于训练

import json
with open("train.jsonl", "w", encoding="utf-8") as f:
    for item in filtered:
        f.write(json.dumps(json.loads(item)) + "\n")

四、进阶能力:让Agent更智能!

能力方法示例
自动标签空间抽取Chain-of-Thought Prompt“这个任务可能有哪些分类?”
多风格样本生成Prompt模板+变量注入情绪/专业/幽默风格变换
失败样本重试加入反馈链若生成失败则回滚并再生成
样本追踪与元数据记录加入日志记录模块“此样本由模板A+标签B生成”

五、可视化与迭代界面建议

  • 使用 Gradio/Streamlit 搭建合成控制台:

    • 输入任务 → 设置样本数量/风格 → 实时显示生成内容

  • 或将 Agent 集成进 Jupyter Notebook,用交互单元控制采样


六、部署建议与调度框架

场景方案
单机调用Python 脚本 + Streamlit
服务化FastAPI 接口封装合成Agent
批量任务调度Airflow / Celery / LangSmith task queue
模型选择引擎自定义大模型注册模块(支持OpenAI, Claude, Tongyi等)

七、结语

使用 LangChain 构建自动合成数据 Agent,不只是让模型“能写”,更是让它“知道什么时候写、怎么写、如何筛选、写得好不好”。

这是一种具备规划、执行、反馈能力的智能体式数据构建工具,是未来训练流程的关键一环。


下一篇是工程实战专题②:合成数据版本控制与数据治理机制设计(适合团队协作和MLOps),是否继续?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值