目录
用 LangChain + GPT 构建自动合成数据 Agent:模块拆解与实现思路全解析
用 LangChain + GPT 构建自动合成数据 Agent:模块拆解与实现思路全解析
随着 AIGC 能力提升,“手动写 Prompt 生数据”的方式已越来越难以满足高效合成数据的需求。我们需要让 AI 像人一样,自动规划、执行、生成、评估数据。
这正是 LangChain + GPT 构建的数据合成 Agent 的核心目标:
🤖「给定一个任务目标,我能自动设定生成内容、调用大模型生成样本、判断效果是否合格,并循环优化,直到你满意为止。」
一、项目目标:自动构建训练数据,不再靠人
✅ 示例目标场景:
-
医疗对话数据合成
-
多轮问答任务生成训练对
-
文本分类 / 情感分析伪样本生成
-
面向知识图谱的实体/关系对合成
-
图文对数据合成 + TTS语音生成
二、系统总览架构(建议画成流程图)
用户输入任务描述/需求
↓
数据合成Agent 启动(LangChain)
↓
【任务理解模块】→ 识别任务类型/格式/标签空间
↓
【Prompt构建器】→ 构建多样化生成指令
↓
【模型调用模块】→ GPT / Claude / 自部署模型生成样本
↓
【样本评估器】→ 自动筛选、打分、去重、格式化
↓
【输出JSON/CSV/训练集】
三、模块拆解与代码思路
✅ 1. 任务理解模块
功能:判断用户输入是分类/问答/摘要/对话类,并提取关键信息
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
template = "以下是一个数据生成任务,请分析其目标并输出类型及标签:\n\n{input}\n\n任务类型:"
chain = LLMChain(llm=ChatOpenAI(), prompt=PromptTemplate.from_template(template))
result = chain.run("我想构建一个情感分类的数据集,包含正向和负向的评论")
# 输出:任务类型:文本分类;标签:正向,负向
✅ 2. Prompt构建器模块
功能:根据任务类型,动态生成数据合成用的 Prompt 模板。
prompt = f"""
请生成一条情感分类训练样本,要求如下:
- 评论内容尽量真实自然
- 标签为“正向”或“负向”
- 返回格式为JSON
"""
# 多样化技巧:加入风格变化/产品种类
✅ 3. 多轮生成器模块
功能:批量并发生成多条数据,并格式化为结构化输出
from langchain.agents import initialize_agent, Tool
from langchain.tools import tool
@tool
def generate_example(prompt):
return ChatOpenAI().call(prompt).content
agent = initialize_agent([Tool(name="generator", func=generate_example)], llm=ChatOpenAI())
results = [agent.run(prompt) for _ in range(50)] # 批量生成
✅ 4. 样本质量控制模块
功能:判断样本是否语义通顺、结构正确、标签准确
-
可以使用 GPT 来做 JSON 格式检查 + 数据合理性检查
-
或用自定义规则+regex过滤无效样本
def is_valid_sample(sample: str):
return sample.startswith('{') and '"label":' in sample and len(sample) < 500
filtered = [s for s in results if is_valid_sample(s)]
✅ 5. 输出模块(本地/云)
-
输出为
.jsonl
,.csv
,.txt
-
或保存为 HuggingFace
DatasetDict
格式用于训练
import json
with open("train.jsonl", "w", encoding="utf-8") as f:
for item in filtered:
f.write(json.dumps(json.loads(item)) + "\n")
四、进阶能力:让Agent更智能!
能力 | 方法 | 示例 |
---|---|---|
自动标签空间抽取 | Chain-of-Thought Prompt | “这个任务可能有哪些分类?” |
多风格样本生成 | Prompt模板+变量注入 | 情绪/专业/幽默风格变换 |
失败样本重试 | 加入反馈链 | 若生成失败则回滚并再生成 |
样本追踪与元数据记录 | 加入日志记录模块 | “此样本由模板A+标签B生成” |
五、可视化与迭代界面建议
-
使用 Gradio/Streamlit 搭建合成控制台:
-
输入任务 → 设置样本数量/风格 → 实时显示生成内容
-
-
或将 Agent 集成进 Jupyter Notebook,用交互单元控制采样
六、部署建议与调度框架
场景 | 方案 |
---|---|
单机调用 | Python 脚本 + Streamlit |
服务化 | FastAPI 接口封装合成Agent |
批量任务调度 | Airflow / Celery / LangSmith task queue |
模型选择引擎 | 自定义大模型注册模块(支持OpenAI, Claude, Tongyi等) |
七、结语
使用 LangChain 构建自动合成数据 Agent,不只是让模型“能写”,更是让它“知道什么时候写、怎么写、如何筛选、写得好不好”。
这是一种具备规划、执行、反馈能力的智能体式数据构建工具,是未来训练流程的关键一环。
下一篇是工程实战专题②:合成数据版本控制与数据治理机制设计(适合团队协作和MLOps),是否继续?