强化学习前世今生
也可以直接查看本博主强化学习专栏的简介:
https://blog.csdn.net/gsww404/article/details/79763003 [直接点击查看完整版]
如今机器学习发展的如此迅猛,各类算法层出不群,特别是深度神经网络的发展,为非常经典的强化学习带来了新的思路,虽然强化学习一直在发展中,但在2013年这个关键点,DeepMind大神David Sliver使用了神经网络逼近函数值后,开始了新的方向,又一发不可收拾的证明了确定性策略等,纵观近四年的ICML,NPIS等会议论文,都有涉猎。因此本文在参考已有论文,博客、专栏、书籍、视频的基础上开始系列博客学习记录,如有写的错误地方,还望大家批评指教。
开始正文,说起强化学习,估计每本涉及到强化学习的书,视频等都会提一个名词 " AlphaGoZero "
,
本文不大肆吹起概念,具体自己
阅读其相关资料,:
Content:
https://deepmind.com/blog/alphago-zero-learning-scratch/
https://xijunlee.github.io/2017/11/03/Zero/
Paper: https://deepmind.com/documents/119/agz_unformatted_nature.pdf
Code: https://github.com/search?l=Python&q=alphaGo+zero&type=Repositories&utf8=%E2%9C%93