基于OpenPCDet框架进行Pointpillars算法环境搭建并基于TensorRT和ROS部署

参考链接

基于OpenDet进行训练,基于tensorrt-8.5进行部署并移植到ROS
参考链接:https://github.com/windzu/pointpillars

本篇指涉及环境搭建和自己测试的效果演示,部分修改的代码目前不方便放出,留待以后吧,而且只是一些小改动实现也比较简单。

训练和推理环境:

  • 显卡:3090Ti
  • CUDA:电脑本地安装了cuda11.6但是在conda环境中配置的是cuda11.3,倒是也没耽误训练和推理。
  • tensorrt:8.5版本

1.创建虚拟环境

conda create -n pointpillars_ros python=3.8
conda activate pointpillars_ros
conda install pytorch=1.11.0 torchvision torchaudio cudatoolkit=11.3 -c pytorch -y

2.安装OpenDet

git clone https://github.com/open-mmlab/OpenPCDet.git
cd OpenPCDet
pip install spconv-cu113
pip install av2
pip install kornia==0.5.8
pip install -r requirements.txt
pip install -v e .

3.安装用于模型转换的库

pip install pyyaml scikit-image onnx==1.14.0 onnx-simplifier==0.4.33
pip install onnx_graphsurgeon
<think>好的,我现在需要帮助用户了解如何系统地学习点云目标检测技术。首先,用户提到了他们参考的几篇文献,其中涉及激光雷达点云目标检测ROS上的实现、深度迁移学习在三维点云任务中的应用,以及PointPillars模型的应用。我需要结合这些引用内容来构建回答。 首先,我应该确定用户的需求是什么。他们想系统地学习点云目标检测技术,可能需要从基础到应用的全流程指导。接下来,我需要考虑学习路径的步骤,包括数学基础、编程技能、点云数据处理、经典算法、深度学习框架、实际项目应用等。 然后,回顾用户提供的引用内容。引用[1]提到激光雷达点云目标检测在无人驾驶等领域的应用,以及使用深度学习算法ROS上实现实时检测。引用[2]讨论了深度迁移学习在三维点云任务中的综述,而引用[3]介绍了PointPillars模型的应用。这些引用可以作为支撑各个学习阶段的依据。 我需要将这些引用自然地融入到回答中,例如在数学基础部分提到线性代数概率论的重要性,可能不需要直接引用,但在点云处理部分可以引用[1]中的ROS实现。在经典算法阶段,可以提到PointPillars模型(引用[3]),而在迁移学习部分则可以引用[2]的内容。 接下来,我需要确保回答结构清晰,分步骤进行,每个步骤下有具体的子点,且每个建议都有实际的操作方法,比如推荐书籍、课程、工具等。同时,生成的相关问题需要与用户的问题紧密相关,帮助他们进一步深入学习。 最后,检查是否符合用户的要求:使用中文、LaTeX格式正确(数学公式用$...$,独立公式用$$...$$)、引用标识正确添加。确保没有使用Markdown格式,语言自然,分点明确,且在适当的地方插入引用。</think>要系统学习点云目标检测技术,可按照以下步骤逐步深入: ### 一、基础理论准备 1. **数学基础** - 掌握线性代数(矩阵运算)、微积分(梯度计算)概率论(贝叶斯滤波) - 重点理解三维空间变换:$T = \begin{bmatrix} R & t \\ 0 & 1 \end{bmatrix}$,其中$R$为旋转矩阵,$t$为平移向量 2. **编程基础** - 熟练使用Python及科学计算库(NumPy、SciPy) - 学习点云处理库:Open3D、PCL(Point Cloud Library) ### 二、点云特性认知 1. **数据特点** - 理解无序性、稀疏性旋转不变性特征 - 掌握点云数据格式(.pcd, .ply)与存储结构 2. **预处理技术** - 降采样:体素滤波(Voxel Grid) $$ V_{size} = \frac{点云包围盒尺寸}{网格分辨率} $$ - 地面分割:RANSAC算法实现[^1] ### 三、经典方法学习路径 | 阶段 | 方法类型 | 代表算法 | 学习重点 | |------|----------|----------|----------| | 1 | 传统方法 | VoxelNet | 手工特征提取 | | 2 | 深度学习 | PointNet | 对称函数设计 | | 3 | 最新进展 | PointPillars | 柱状体特征编码[^3] | ### 四、实践进阶路线 1. **框架搭建** - 使用PyTorch或TensorFlow实现基础网络 - 复现经典论文代码(如GitHub开源项目) 2. **工具链整合** - 在ROS中实现实时检测流水线 - 部署优化:TensorRT加速、模型量化 3. **迁移学习应用** - 利用预训练模型进行领域适配[^2] - 小样本学习:Few-shot Learning策略 ### 五、学习资源推荐 - **书籍**:《3D深度学习》《点云处理技术详解》 - **课程**:Coursera《自动驾驶中的3D视觉》 - **数据集**:KITTI、Waymo Open Dataset、nuScenes - **工具链**:ROS+PyTorch+OpenPCDet组合
评论 57
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值