《特征工程三部曲》之二:特征选择

特征选择在机器学习中至关重要,通过减少不相关或冗余特征,能提升模型精度,缩短运行时间。常见的方法包括方差选择法、相关系数法、递归特征消除法和模型选择法。方差选择基于特征方差筛选;相关系数法关注特征与目标的相关性;递归特征消除通过反复训练和评估来确定最佳特征组合;模型选择法则利用已训练模型选择最优特征。理解并灵活运用这些方法,有助于深入理解数据和机器学习的本质。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

什么特征选择

  • 特征选择 ( Feature Selection )也称特征子集选择( Feature Subset Selection , FSS ) ,或属性选择( Attribute Selection ) ,是指从全部特征中选取一个特征子集,使构造出来的模型更好。

为什么要做特征选择

  • 在机器学习的实际应用中,特征数量往往较多,其中可能存在不相关的特征,特征之间也可能存在相互依赖,容易导致如下的后果:

    • 特征个数越多,分析特征、训练模型所需的时间就越长。

    • 特征个数越多,容易引起“维度灾难”,模型也会越复杂,其推广能力会下降。

  • 特征选择能剔除不相关(irrelevant)或亢余(redundant )的特征,从而达到减少特征个数,提高模型精确度,减少运行时间的目的。另一方面,选取出真正相关的特征简化了模型,使研究人员易于理解数据产生的过程。

特征选择基本原则

数据预处理完成之后,我们需要选择有意义的特征,输入机器学习的算法和模型进行训练,通常来说,从两个方面考虑来选择特征

  • 如何选择特征

    • 是否发散

    • 是否相关

如果一个特征不发散,例如方差接近于0,也就是说样本在这个特征上基本没

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值