sklearn中的LogisticRegression模型

LogisticRegression是一种广义线性分类模型,其可通过模拟数据的伯努利分布(对于二分类问题)和多项式分布(对于多分类问题)参数,对样本所属各分类的概率值进行预测。

1. 模型的主要参数

在sklearn中, LogisticRegression模型的主要参数包括:

模型参数 Parameter含义 备注
penalty 正则项 广义线性模型的正则项,可选值包括L1正则项'l1'、L2正则项'l2'、复合正则'elasticnet'和无正则项None,默认值为'l2'。值得注意的是,正则项的选择应与优化求解器相匹配(详见`solver`参数)。
l1_ratio 正则权重系数 L1正则和L2正则的权重系数,取值空间为0-1。若为0,则相当于为L2正则;若为1,则为L1正则,否则为Elasticnet正则。
dual 对偶问题 默认值False,可设为True将问题转换为对偶问题(详见本博客SVM问题中原问题-对偶问题的推导),仅适用于采用L2正则化且求解器为'liblinear’的情况。当样本数少于特征数时,推荐为True。
tol 迭代阈值 求解器迭代求解时,停止迭代的目标函数改变阈值。
C 正则化系数倒数 注意,其值与正则化强度相反,即C值越小,正则化程度越大。其值必须为正,且默认值为1
fit_intercept 是否预设偏置 控制广义线性模型中是否预设
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值