1、用梯度下降法求最小值
如果我们如果要求y = x^2的最小值,应该怎么求呢?
此前有2种方法,首先我们可以将其配方,使其转化成为y = (x-0)^2 +0 这样的形式,通过这种形式,我们可以很直接的看到当x = 0时,y = 0为最小值。
其次我们可以求导数,y' = Δy/Δx = 2x,令y' = 0,可以得到x = 0,带入y = x^2,得到y = 0。
除了上述两种方法,我们还可以通过梯度下降的方法求得。
梯度是多元函数的导数,可以理解为是一个导数,所以可以先求导数(单元函数的梯度)y' = 2x,
然后再创建一个初始点(例如(5,25)),我们设定一个移动的步长lr(learning_rate(学习率的简称)不要太大),然后执行一下下降的操作,我们用x减去步长与y'的积,用起始点的x的数值带入并更新到x上,因为这里y' = 2x,所以这个步骤相当于x = x - lr * 2 * x,我们假设步长为0.1,那么经过这么一次运算可以得到x = 4,代入原方程,可以得到y = 16,到这就算完成了因此梯度的下降,我们也能明显看出来y的值变小了。然后再继续用刚才得到的新的x去执行下降的操作,可以得到x = 4 - 0.1* 2* 4 = 3.2,更新x的值再带到原函数中,然后反复在这个循环中重复以上操作,以此类推,执行指定次数后得到的结果就能接近真实值,次数越多越接近。
代码:
import torch
def square_function(x):
return x**2
x = torch.tensor([5.0], requires_grad = True)
lr = 0.1
for i in range(20):
y = square_function(x)
y.backward()
print('x = {0},x的梯度(y`)为{1},y = {2}'.format(x.item(), x.grad.item(), y.item()))
# 使用梯度更新 x(梯度下降)
with torch.no_grad(): # 禁用梯度追踪
x -= lr * x.grad # 更新 x
x.grad.zero_() # 清空梯度
print(f"最后 x = {x.item()}")
运行结果:
2、利用梯度下降法求线性回归公式
如果说我们有两组数据x,y,知道y与x之间的关系为y = wx,我们如何去求那个w呢。我们假定一个模型f(x)= wx,如何让计算机去判断w的值是否准确呢?我们可以用差值来准确反馈出当前的w与实际的w差值的大小来判断是否准确。因为y = wx,所以当前的w乘以x就能相当于此时的y,用它与上一步的y求差值,就能看到执行完一部梯度下降后的w是否与实际值存在偏差,偏差大不大。于是就有了偏差值 = wx - y,但是我们并不能肯定 wx - y一定是正负,出于正反面的考虑和求导的方便的考虑,我们给这个偏差的值加上平方,反正平方并不影响对大小的判断。此时有关偏差的判断值就来到了(wx-y)^2,其实这里与上一个y = x^2是相似的,只不过y = x^2未知的是x,这个未知的是w,因为偏差的值越小越精准,所以我们需要求(wx-y)^2的最小值。 &n