一键将VOC数据集转换为YOLO格式,附完整Python脚本解析
在使用 YOLO 系列模型训练时,常常需要将 Pascal VOC 数据集的 XML 标注格式转换为 YOLO 所需的 TXT 格式。本篇文章提供一个完整的 Python 脚本,实现以下功能:
- 将 VOC 的
.xml
标注文件转换为 YOLO 格式的.txt
- 将图像文件复制到目标目录
- 根据 JSON 标签生成
.names
类别标签文件
📁 项目结构说明
VOCdevkit/
├── VOC2007/
│ ├── Annotations/ # VOC XML 标注文件
│ ├── JPEGImages/ # 图片文件
│ └── ImageSets/Main/ # 训练/验证文件列表(train.txt、val.txt)
代码说明:下面代码可以将数据进行划分为
my_yolo_dataset/
├── train/
│ ├── images/
│ └── labels/
├── val/
│ ├── images/
│ └── labels/
├── data/
│ └── my_data_label.names
"""
本脚本有两个功能:
1.将voc数据集标注信息(.xml)转为yolo标注格式(.txt),并将图像文件复制到相应文件夹
2.根据json标签文件,生成对应names标签(my_data_label.names)
"""
import os
from tqdm import tqdm
from lxml import etree
import json
import shutil
# voc数据集根目录以及版本
# voc_root = "/data/VOCdevkit"
# voc_version = "VOC2012"
voc_root = "/Volumes/PSSD/sources/VOCdevkit2"
voc_version = "VOC2007"
# 转换的训练集以及验证集对应txt文件
train_txt = "train.txt"
val_txt = "val.txt"
# 转换后的文件保存目录
save_file_root = "./my_yolo_dataset"
# label标签对应json文件
label_json_path = './data/pascal_voc_classes.json'
# 拼接出voc的images目录,xml目录,txt目录
voc_images_path = os.path.join(voc_root, voc_version, "JPEGImages")
voc_xml_path = os.path.join(voc_root, voc_version, "Annotations")
train_txt_path = os.path.join(voc_root, voc_version, "ImageSets", "Main", train_txt)
val_txt_path = os.path.join(voc_root, voc_version, "ImageSets", "Main", val_txt)
# 检查文件/文件夹都是否存在
assert os.path.exists(voc_images_path), "VOC images path not exist..."
assert os.path.exists(voc_xml_path), "VOC xml path not exist..."
assert os.path.exists(train_txt_path), "VOC train txt file not exist..."
assert os.path.exists(val_txt_path), "VOC val txt file not exist..."
assert os.path.exists(label_json_path), "label_json_path does not exist..."
if os.path.exists(save_file_root) is False:
os.makedirs(save_file_root)
def parse_xml_to_dict(xml):
"""
将xml文件解析成字典形式,参考tensorflow的recursive_parse_xml_to_dict
Args:
xml: xml tree obtained by parsing XML file contents using lxml.etree
Returns:
Python dictionary holding XML contents.
"""
if len(xml) == 0: # 遍历到底层,直接返回tag对应的信息
return {xml.tag: xml.text}
result = {}
for child in xml:
child_result = parse_xml_to_dict(child) # 递归遍历标签信息
if child.tag != 'object':
result[child.tag] = child_result[child.tag]
else:
if child.tag not in result: # 因为object可能有多个,所以需要放入列表里
result[child.tag] = []
result[child.tag].append(child_result[child.tag])
return {xml.tag: result}
def translate_info(file_names: list, save_root: str, class_dict: dict, train_val='train'):
"""
将对应xml文件信息转为yolo中使用的txt文件信息
:param file_names:
:param save_root:
:param class_dict:
:param train_val:
:return:
"""
save_txt_path = os.path.join(save_root, train_val, "labels")
if os.path.exists(save_txt_path) is False:
os.makedirs(save_txt_path)
save_images_path = os.path.join(save_root, train_val, "images")
if os.path.exists(save_images_path) is False:
os.makedirs(save_images_path)
for file in tqdm(file_names, desc="translate {} file...".format(train_val)):
# 检查下图像文件是否存在
img_path = os.path.join(voc_images_path, file + ".jpg")
assert os.path.exists(img_path), "file:{} not exist...".format(img_path)
# 检查xml文件是否存在
xml_path = os.path.join(voc_xml_path, file + ".xml")
assert os.path.exists(xml_path), "file:{} not exist...".format(xml_path)
# read xml
with open(xml_path) as fid:
xml_str = fid.read()
xml = etree.fromstring(xml_str)
data = parse_xml_to_dict(xml)["annotation"]
img_height = int(data["size"]["height"])
img_width = int(data["size"]["width"])
# write object info into txt
assert "object" in data.keys(), "file: '{}' lack of object key.".format(xml_path)
if len(data["object"]) == 0:
# 如果xml文件中没有目标就直接忽略该样本
print("Warning: in '{}' xml, there are no objects.".format(xml_path))
continue
with open(os.path.join(save_txt_path, file + ".txt"), "w") as f:
for index, obj in enumerate(data["object"]):
# 获取每个object的box信息
xmin = float(obj["bndbox"]["xmin"])
xmax = float(obj["bndbox"]["xmax"])
ymin = float(obj["bndbox"]["ymin"])
ymax = float(obj["bndbox"]["ymax"])
class_name = obj["name"]
class_index = class_dict[class_name] - 1 # 目标id从0开始
# 进一步检查数据,有的标注信息中可能有w或h为0的情况,这样的数据会导致计算回归loss为nan
if xmax <= xmin or ymax <= ymin:
print("Warning: in '{}' xml, there are some bbox w/h <=0".format(xml_path))
continue
# 将box信息转换到yolo格式
xcenter = xmin + (xmax - xmin) / 2
ycenter = ymin + (ymax - ymin) / 2
w = xmax - xmin
h = ymax - ymin
# 绝对坐标转相对坐标,保存6位小数
xcenter = round(xcenter / img_width, 6)
ycenter = round(ycenter / img_height, 6)
w = round(w / img_width, 6)
h = round(h / img_height, 6)
info = [str(i) for i in [class_index, xcenter, ycenter, w, h]]
if index == 0:
f.write(" ".join(info))
else:
f.write("\n" + " ".join(info))
# copy image into save_images_path
path_copy_to = os.path.join(save_images_path, img_path.split(os.sep)[-1])
if os.path.exists(path_copy_to) is False:
shutil.copyfile(img_path, path_copy_to)
def create_class_names(class_dict: dict):
keys = class_dict.keys()
with open("./data/my_data_label.names", "w") as w:
for index, k in enumerate(keys):
if index + 1 == len(keys):
w.write(k)
else:
w.write(k + "\n")
def main():
# read class_indict
json_file = open(label_json_path, 'r')
class_dict = json.load(json_file)
# 读取train.txt中的所有行信息,删除空行
with open(train_txt_path, "r") as r:
train_file_names = [i for i in r.read().splitlines() if len(i.strip()) > 0]
# voc信息转yolo,并将图像文件复制到相应文件夹
translate_info(train_file_names, save_file_root, class_dict, "train")
# 读取val.txt中的所有行信息,删除空行
with open(val_txt_path, "r") as r:
val_file_names = [i for i in r.read().splitlines() if len(i.strip()) > 0]
# voc信息转yolo,并将图像文件复制到相应文件夹
translate_info(val_file_names, save_file_root, class_dict, "val")
# 创建my_data_label.names文件
create_class_names(class_dict)
if __name__ == "__main__":
main()
代码说明:下面的代码可以通过添加上面的划分完毕后的数据路径转变为train.txt和val.txt.
#!/usr/bin/env python
# coding=utf-8
"""
@author: zgw
@date: 2025/7/10 16:15
@source from:
"""
import os
def generate_txt(image_dir, output_txt):
with open(output_txt, 'w') as f:
for fname in sorted(os.listdir(image_dir)):
if fname.endswith('.jpg') or fname.endswith('.png'):
path = os.path.join(image_dir, fname)
f.write(f"{path}\n")
# 生成 train.txt 和 val.txt
generate_txt('my_yolo_dataset/train/images', 'train.txt')
generate_txt('my_yolo_dataset/val/images', 'val.txt')
总结:
通过代码就可以将VOC数据转变为YOLO格式的训练数据集格式。方便再yolov4、v5的代码中进行训练。