windows下如何搭建深度学习tensorlofw-gpu环境(详细全解)

本文详细介绍了在Windows系统下安装和配置Tensorflow-GPU的步骤,包括选择匹配的tensorflow-gpu和python版本,使用pip安装,下载CUDA和CUDNN并确保版本对应,以及设置系统环境变量。在安装完成后,通过Python测试GPU是否可用。遵循本文指南,可顺利完成tensorflow-gpu的搭建。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

安装tensorflow-gpu

当我们进行大型神经网络模型训练的时候,我们就不可避免的需要用到GPU训练。然而,对于tensorflow来讲,*如果想要在跑模型时调用机器的GPU,我们需要下载代码相应GPU版本,才能够使用。我们先讲一下如何去下载制定版本的GPU:
在下载GPU时,我们要先清楚自己的要跑的模型需要什么版本的GPU。我们一般去根据自己的python版本来使用对应的tf-gpu版本。
CPU中tensorflow和python对应关系
图 CPU中tf和py关系
GPU中tensorflow-gpu和python对应关系
在这里插入图片描述

#比如我们现在的python是3.6,要下载tensorflow-gpu可用以下tf-gpu=1.11.0,可用以下指令:
pip install tensorflow-gpu==1.11.0 # = 两边不要有空格

pip下载太慢,请看这篇文章:解决pip下载过慢问题
这样我们就完成了tensorflow-gpu的安装,下面是CUDA和CUDNN的安装;

如何安装CUDA和CUDNN

在安装tensorflow-gpu后,我们需要去下载相应的CUDA和CUDNN才能使用。它的要求非常苛刻,版本一定要对应的上才能使用。具体对应版本就是上面的那个图:
在这里插入图片描述
下面给出CUDA和CUDNN的历史下载地址:
CUDA历史版本下载地址 https://developer.nvidia.com/cuda-toolkit-archive
CUDNN下载地址 https://developer.nvidia.com/rdp/cudnn-archive
其中在安装CUDNN时,要注册一个账号,注册完就可以下载了。
一般你下载好CUDA后,系统自动在C盘的Program Files文件中创建了NVIDIA GPUComputing Toolkit文件夹,你可以找到如下路径,进去发现目录结构如下:
在这里插入图片描述

解压打开已经下载好的CUDNN压缩包,目录结构是这样的:
在这里插入图片描述
此时你发现两者的都有lib、include、bin的文件夹,你需要做的就是把CUDNN的三个文件夹中的文件一一对应的放到CUDA的三个文件中去。

系统环境变量设置

完成上面步骤后,最后一步就是搭建环境变量了,把你的CUDA中以下四个路径复制到系统变量的Path中去,这部非常重要,否则无法正常调用。
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0\libnvvp
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0\bin
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0\lib
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0\include

到这里后,你已经完成了Windows下tensorflow-gpu环境的搭建了,我们到python里去测试一下:

import tensorflow as tf
tf.test.is_gpu_available() 

若都没问题的话,tensorflow可以成功导入,虽然中间会报许多警告,但是可以不用理会。
以及倘若cuda配置正确,则会打印出True。

以上就是windows下tensorflow-gpu环境的搭建过程了,祝你早日脱坑成功!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

很随便的wei

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值