插值算法
图像常用的插值算法有两种,一种是最近邻插值算法,另外一种是双线性插值算法。最近邻插值算法,顾名思义最近邻插值,是指将目标图像中的点,对应到源图像中后,找到最相邻的整数点,作为插值后的输出。

emsp;如上图所示,目标图像中的某点投影到原图像中的位置为点P,此时易知,f(P)=f(Q11)f(P) = f(Q11)f(P)=f(Q11).
如下图所示,将一幅3X3的图像放大到4X4,用f(x,y)f(x, y)f(x,y)表示目标图像,h(x,y)h(x, y)h(x,y)表示原图像,我们有如下公式:
f(dstX,dstY)=h(dstXsrcWidthdstWidth,dstYsrcHeightdstHeight)
\begin{array}{c}
f(dst_{X}, dst_{Y}) = h(\frac{dst_{X}src_{Width}} {dst_{Width}}, \frac{dst_{Y}src_{Height}} {dst_{Height}})
\end{array}
f(dstX,dstY)=h(dstWidthdstXsrcWidth,dstHeightdstYsrcHeight)

对于双线性插值,双线性插值就是线性插值在二维时的推广,在两个方向上做三次线性插值,具体操作如下图所示:

基于python的实现方法
import cv2
if __name__ == "__main__":
img = cv2.imread('D:/image/yuner.jpg', cv2.IMREAD_UNCHANGED)
print('Original Dimensions : ',img.shape)
scale_percent = 30 # percent of original size
width = int(img.shape[1] * scale_percent / 100)
height = int(img.shape[0] * scale_percent / 100)
dim = (width, height)
# resize image
resized = cv2.resize(img, dim, interpolation = cv2.INTER_LINEAR)
fx = 1.5
fy = 1.5
resized1 = cv2.resize(resized, dsize=None, fx=fx, fy=fy, interpolation = cv2.INTER_NEAREST)
resized2 = cv2.resize(resized, dsize=None, fx=fx, fy=fy, interpolation = cv2.INTER_LINEAR)
print('Resized Dimensions : ',resized.shape)
cv2.imshow("Resized image", resized)
cv2.imshow("INTER_NEAREST image", resized1)
cv2.imshow("INTER_LINEAR image", resized2)
cv2.waitKey(0)
cv2.destroyAllWindows()