CVPR2018目标检测相关论文总结

本文总结了CVPR2018年发表的七个目标检测算法,包括CascadedRCNN、RelationNetworks、RefineDet、SNIP、R-FCN-3000、DES和STDN。这些算法分别在检测精度、模型训练、小目标检测、多尺度检测等方面做出了创新。例如,CascadedRCNN通过分析proposal的IOU与检测IOU的关系提升检测质量;RelationNetworks利用物体间的关系优化检测效果;RefineDet结合SSD和RPN网络提高检测效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

                                      CVPR2018目标检测

 

1、Cascaded RCNN (相关度:

论文:Cascade R-CNN Delving into High Quality Object Detection 

论文链接:https://arxiv.org/abs/1712.00726 

代码链接:https://github.com/zhaoweicai/cascade-rcnn 

详细内容请移步:Cascade RCNN算法笔记

创新点及结论:分析proposal的IOU与最后检测的IOU间关系,得到结论: 当一个检测模型采用某个阈值(假设u=0.6)来界定正负样本时,那么当输入proposal的IOU在这个阈值(u=0.6)附近时,该检测模型比基于其他阈值训练的检测模型的效果要好。

 

2、Relation Networks for Object Detection (相关度:★)

论文:Relation Networks for Object Detection 

论文链接:https://arxiv.org/abs/1711.11575 

代码链接:https://github.com/msracver/Relation-Networks-for-Object-Detection 

详细内容请移步:Relation Networks for Object Detection算法笔记Relation Networks for Object Detection源码解读(网络结构细节)

创新点及结论: 模型学到object之间的关系, 在检测过程中可以通过利用图像中object之间的相互关系或者叫图像内容(context)来优化检测效果,这种关系既包括相对位置关系也包括图像特征关系

 

3、RefineDet (相关度:

论文:Single-Shot Refinement Neural Network for Object Detection 

论文链接:https://arxiv.org/abs/1711.06897 

代码链接:https://github.com/sfzhang15/RefineDet 

详细内容请移步:RefineDet算法笔记RefineDet算法源码 (一)训练脚本RefineDet算法源码(二)网络结构

创新点及结论:one-stage combine with two-stage , SSD算法和RPN网络、FPN算法的结合,可以在保持SSD高效的前提下提高检测效果。

 

4、SNIP (相关度:

论文:An Analysis of Scale Invariance in Object Detection – SNIP 

论文链接:https://arxiv.org/abs/1711.08189 

代码链接:http://bit.ly/2yXVg4c 

详细内容请移步:SNIP 算法笔记

问题:从数据集出发进行了非常详细的分析和实验对比,发现在COCO数据集中小目标占比要比ImageNet数据集大,这样在用ImageNt数据集的预训练模型时就会产生domain-shift问题,另外COCO数据集中的object尺寸变化范围非常大,即便采用multi-scale training的方式也很难训练一个检测器去cover所有scale的目标。

方法: 提出一种新的训练模型的方式:Scale Normalization for Image Pyramids (SNIP),该算法主要包含两个改进点:1、为了减少前面所提到的domain-shift,在梯度回传时只将和预训练模型所基于的训练数据尺寸相对应的ROI的梯度进行回传。2、借鉴了multi-scale training的思想,引入图像金字塔来处理数据集中不同尺寸的数据

 

5、R-FCN-3000 (相关度:

论文:R-FCN-3000 at 30fps: Decoupling Detection and Classification 

链接:https://arxiv.org/abs/1712.01802 

详细内容请移步:R-FCN-3000算法笔记

创新点:R-FCN算法(关于R-FCN算法的介绍可以看博客)应用在检测类别较多的场景下

6、DES (相关度:

论文:Single-Shot Object Detection with Enriched Semantics 

论文链接:https://arxiv.org/abs/1712.00433 

详细内容请移步:Detection with Enriched Semantics(DES)算法笔记

创新点及方法:

Detection with Enriched Semantics(DES)主要是基于SSD做改进,也是为了解决SSD中对于小目标物体的检测效果不好的问题,因为SSD算法对小目标的检测只是利用了浅层的特征,并没有用到高层的语义特征。因此这篇文章的出发点就是为了增加用于检测的feature map的语义信息,主要的措施包括:1、引入segmentation module用于得到attention mask,从而提高low level的feature map的语义信息。2、引入global activation module用于提高high level的feature map的语义信息

7、STDN (相关度:

论文:Scale-Transferrable Object Detection 

论文链接:https://pan.baidu.com/s/1i6Yjvpz 

详细内容请移步:Scale-Transferrable Detection Network(STDN)算法笔记

创新点: Scale-Transferrable Detection Network(STDN)算法主要用于提高object detection算法对不同scale的object的检测效果。

方法: 该算法采用DenseNet网络作为特征提取网络(自带高低层特征融合),基于多层特征做预测(类似SSD),并对预测结果做融合得到最终结果。该算法有两个特点:1、主网络采用DenseNet,了解DenseNet的同学应该知道该网络在一个block中,每一层的输入feature map是前面几层的输出feature map做concate后的结果,因此相当于高低层特征做了融合。高低层特征融合其实对object detection算法而言是比较重要的,FPN算法是显式地做了高低层特征融合,而SSD没有,这也是为什么SSD在小目标问题上检测效果不好的原因之一,因此该算法虽然看似SSD,但其实和SSD有区别。2、引入scale-transfer layer,实现了在几乎不增加参数量和计算量的前提下生成大尺寸的feature map(其他常见的算法基本上都是采用deconvolution或upsample),由于scale-transfer layer是一个转换操作,因此基本不会引入额外的参数量和计算量。

### CVPR 2025 目标检测相关论文概述 CVPR(Computer Vision and Pattern Recognition)作为计算机视觉领域的顶级会议,每年都会发布大量关于目标检测的研究成果。根据提供的引用内容以及最新趋势[^1],以下是对CVPR 2025中可能涉及的目标检测相关论文的分析和总结。 #### 1. **多模态融合在目标检测中的应用** 近年来,多模态传感器(如LiDAR、Radar、摄像头等)的融合技术在目标检测领域取得了显著进展。例如,在CVPR 2024中,Chae等人提出了一种结合LiDAR和4D Radar的鲁棒3D目标检测方法[^2]。该研究通过融合不同传感器的优势,提高了在复杂天气条件下的检测性能。可以推测,CVPR 2025可能会进一步探索多模态数据的高效融合策略,尤其是在自动驾驶和机器人视觉领域。 #### 2. **动态字典方法在目标检测中的应用** 动态字典方法是一种新兴的技术,用于解决测试时的分布外(OOD)目标检测问题。例如,论文《OODD: Test-time Out-of-Distribution Detection with Dynamic Dictionary》提出了一种基于动态字典的方法来检测分布外样本[^3]。这种方法通过学习动态特征表示,增强了模型对未知目标的鲁棒性。预计CVPR 2025将会有更多关于动态字典或类似技术的研究,特别是在开放世界场景下的目标检测任务中。 #### 3. **Transformer架构在BEV目标检测中的改进** Transformer架构在目标检测领域的应用已经得到了广泛验证。CVPR 2024的一篇论文《CenterPoint Transformer for BEV Object Detection with Automotive Radar》提出了一种基于Transformer的解码器架构,用于鸟瞰图(BEV)目标检测[^4]。该方法通过二元交叉注意力和上下文注入模块,实现了全局上下文信息的有效编码。可以预见,CVPR 2025将继续深化Transformer在目标检测中的应用,特别是在自动驾驶和高精度地图生成领域。 #### 4. **其他潜在方向** - **无监督/半监督目标检测**:随着数据标注成本的增加,无监督和半监督学习方法在目标检测中的应用逐渐受到关注。 - **实时目标检测优化**:如何在保持高精度的同时降低计算复杂度,仍然是一个重要的研究方向。 - **跨域目标检测**:针对不同场景(如白天到夜晚、晴天到雨天)的适应性研究将成为热点。 ```python # 示例代码:基于Transformer的BEV目标检测框架 class CenterPointTransformer(nn.Module): def __init__(self, num_queries, encoder, decoder): super(CenterPointTransformer, self).__init__() self.num_queries = num_queries self.encoder = encoder self.decoder = decoder def forward(self, x): # 编码器输出 encoder_output = self.encoder(x) # 初始化物体查询 object_queries = torch.zeros((x.shape[0], self.num_queries, encoder_output.shape[-1])) # 解码器处理 decoder_output = self.decoder(encoder_output, object_queries) return decoder_output ``` ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值