机器学习

本文围绕机器学习展开,介绍了监督、无监督、半监督、强化学习及遗传算法等分类。详细阐述了多种神经网络,如CNN、RNN、LSTM RNN等,还提及神经网络技巧。此外,涉及自然语言处理、强化学习方法汇总等内容,最后提到Tensorflow及机器学习实战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


参考莫烦Python

1. 机器学习介绍

1.1. 分类

监督学习 supervised learning
无监督学习 unsupervised learning
半监督学习 semi-supervised learning
强化学习 reinforcement learning
遗传算法 genetic algorithm

1.2. 神经网络

1.2.1. 人工、生物神经网络对比

人工神经网络靠正向和反向传播来更新神经元
生物神经网络靠刺激产生新的联结

1.2.2. 神经网络

Neural Network,全连接神经网络

1.2.3. 卷积神经网络CNN

Convolutional Neural Network,不再针对每一像素,而是针对一小块区域
卷积 -> 池化 -> 全连接

1.2.4. 循环神经网络RNN

Recurrent Neural Network

1.2.5. LSTM RNN循环神经网络

long-short term memory,长短期记忆循环神经网络

1.2.6. 自编码Auto Encoder

自编码是一种非监督学习

1.2.7. 生成对抗网络GAN

Generative Adver

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值