windows pytorch unet网络学习之BasicDataset

本文介绍了一种构建图像处理数据集的方法,通过使用BasicDataset类,可以读取指定目录下的所有图片文件,排除隐藏文件,并将文件名存储为列表。这对于训练深度学习模型至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

dataset = BasicDataset(dir_img, dir_mask, img_scale)

上面是调用语句

class BasicDataset(Dataset):
    def __init__(self, imgs_dir, masks_dir, scale=1):
        self.imgs_dir = imgs_dir
        self.masks_dir = masks_dir
        self.scale = scale
        assert 0 < scale <= 1, 'Scale must be between 0 and 1'

        self.ids = [splitext(file)[0] for file in listdir(imgs_dir)
                    if not file.startswith('.')]
        logging.info('Creating dataset with {} examples'.format(len(self.ids)))

从语句可以看出,这里只是将入参赋值给dataset类,并且用listdir系统函数将imags_dir里面的所有的文件名读取到,除了.的文件,并存到list里面

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值