一、需求分析
1. 方案目标
- 解放双手
通过智能可穿戴设备(如AR眼镜)替代手持设备,使工程师在作业过程中能同时接收专家指导并进行操作。 - 远程指导
专家可通过Web端与多名运维工程师实时连接,提供语音、图文指导,提升指导效率和作业效率。 - 作业标准化
系统提供完整流程的作业指导书,工程师按步骤操作,减少依赖个人经验导致的偏差。 - 智能识别
利用AI、大数据构建图像识别模型,形成作业知识库,实时推送告警信息及解决方案。
2. 场景分析
需识别的典型电力场景目标包括:
- 检定设备(仪表)、安全帽佩戴、安全围栏、工器具、安全带佩戴、工程车。
3. 问题挑战
- 环境干扰:现场光照变化、作业姿势、复杂环境(图1)影响识别精度。
- 动态目标跟踪:需对连续视频帧中的目标进行跟踪,结合阈值判断确保准确性(图2)。
- 小目标识别局限:YOLOv3预设先验框基于COCO数据集,对小目标(如仪表)适应性不足(图3)。
二、整体方案
1. 系统架构
组件 | 功能描述 |
---|---|
AR眼镜端 | 实时采集现场视频 |