
知识图谱
文章平均质量分 85
gyypwrs
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
知识图谱-基于索引的分块方法
文献:Large scale instance matching via multiple indexes and candidate selection参考资料:《知识图谱:方法、实践与应用》概要该文献提出的模型简称VMI,方法的主要思想是运用多重索引与候选集合,其中将向量空间模型和倒排索引技术相结合,实现对实例数据的划分。该方法在保证了高质量匹配的情况下,减少了大规模实体相似度计算的次数,提高了整体匹配的效率。方法描述实例分类该方法将实例信息分为以下6类:URI:实例唯一标识符,若两.原创 2021-04-18 11:38:08 · 1522 阅读 · 0 评论 -
知识图谱-高度异构信息空间中实体解析的阻塞框架
文献题目:A Blocking Framework for Entity Resolution in Highly Heterogeneous Information Spaces文献地址:查看文献由于水平有限,大部分是直接机翻,若有不当之处烦请指出Abstract在高度异构、嘈杂、用户生成实体集合的实体解析(ER)环境中,几乎所有的块构建方法都使用冗余来实现高效率。然而,这种做法会导致大量的两两比较,从而对效率产生负面影响。现有的块处理策略旨在在不影响效率的情况下放弃不必要的比较。在本文中,我.翻译 2021-04-10 21:40:34 · 320 阅读 · 0 评论 -
知识图谱-异构知识图的关系感知实体对齐
文献题目:Relation-Aware Entity Alignment for Heterogeneous Knowledge Graphs文献代码:RDGCN参考笔记:论文笔记 - 异构知识图的关系感知实体对齐此文章中有大部分来源于此参考笔记Abstract本文提出了一种新颖的关系感知双图卷积网络(RDGCN),该方法旨在探索存在多关系的知识图谱中复杂关系信息,方法是通过原始图和对偶关系图之间的交互进行建模,并利用高速神经网络门控GCN层捕获邻居结构,以学习更好的实体表示。1.Intro.原创 2021-04-07 22:25:08 · 2057 阅读 · 0 评论 -
知识图谱-知识融合(三)
4.实例层的融合与匹配实例匹配和本体匹配有相似之处,但由于实例的数量巨大,因此实例匹配还需要考虑时间复杂度和空间复杂度4.1实例匹配问题分析空间复杂度挑战:知识图谱匹配中,需要一次性读入内存,并且随后的预处理、匹配计算和映射后的处理也同样需要申请大量的空间才能完成。但只要设计合理的数据结构,并有效利用压缩存储技术,减小空间复杂度带来的负面影响,空间复杂度的挑战是可以解决的。时间复杂度挑战:知识图谱匹配系统的执行时间主要取决于匹配计算的过程,可以通过减少匹配元素对的相似度计算次数,和降低每次相似原创 2021-03-16 18:17:55 · 776 阅读 · 0 评论 -
知识图谱-知识融合(二)
3.本体概念层的融合方法与技术3.1本体映射与本体集成解决本体异构的通用方法是本体集成与本体映射本体集成:将多个本体合并成一个大本体本体映射:寻找本体间的映射规则1.基于单本体的集成将多个本体集成为统一的本体,该本体提供统一的语义规范以及共享词汇.本体集成的步骤:确定本体集成的方法,即是重新建立一个本体,还是利用现有的本体集成(根据代价和效率进行取舍);识别本体的模块,明确集成后的本体应该包含哪些模块,方便集成过程中的取舍问题.;识别每个模块中应该被表示的知识,即明确不同模块需要哪些概原创 2021-03-16 15:47:50 · 1153 阅读 · 0 评论 -
知识图谱-知识融合(一)
知识融合1.什么是知识图谱的融合1.1 概念&术语本体层:描述特定领域的抽象概念、属性、公理实体层:描述具体的实体对象,实体间的关系,包含大量的事实以及数据1.2 为什么要进行知识图谱融合本体层能够解决特定应用的知识共享问题,但若要构建一个统一庞大覆盖世界万物的本体无法实现,一是由于知识是无限的,二是由于本体层的构建受到主观以及分布性的影响,无法得到统一的认可。在知识图谱的应用中,为了融合其他应用所拥有的信息,以及联合其他应用实现更加强大的功能,但这在异构的本体层或是实体层是无法原创 2021-02-20 12:07:25 · 2221 阅读 · 1 评论