高等数学 微分

一、定义

1、概念

        若函数y=f(x)在点x处有导数f'(x)存在,则y因x的变化量△x所引起的改变量 : △y=f(x+△x)-f(x),可获得 △y=f'(x)·△x+o(△x) , 其中 o(△x) 是△x 的高阶无穷小,即当△x趋于0时,o(△x)相对于△x趋于0的速度更快。

        微分表示:  dy=f'(x)△x

2、是否可微

函数 f(x) 在点 x=a 处可微的充要条件是:

  1. 函数在点 x=a处连续

  2. 函数在点 x=a 处左右导数存在且相等

简单来说,就是可微的充要条件是函数 f(x) 在点 x=a 处可导。

二、微分法则

        dy=f'(x) dx  可知,求微分实际上就是求导数,所以微分公式同求导公式。

三、微分中值定理

1、罗尔定理

如果函数 f(x)满足以下条件:

  1. 在闭区间 [a,b]上连续。

  2. 在开区间 (a,b)上可导。

  3. 在区间端点的函数值相等,即 f(a)=f(b)。

那么,在开区间 (a,b)内至少存在一点 c,使得:f′(c)=0

2、拉格朗日中值定理

如果函数 f(x)满足以下条件:

  1. 在闭区间 [a,b] 上连续。

  2. 在开区间 (a,b)上可导。

那么,在开区间 (a,b) 内至少存在一点 c,使得: f′(c)= f(b)−f(a) / (b−a)

拉格朗日中值定理的几何意义是:在区间 [a,b] 上,函数 f(x) 的图像上至少存在一点 c,使得该点处的切线斜率等于区间端点法线的斜率。

3、柯西中值定理

如果函数 f(x) 和 g(x) 满足以下条件:

  1. 在闭区间 [a,b]上连续。

  2. 在开区间 (a,b)上可导。

  3. 在开区间 (a,b) 内,g′(x)≠0。

那么,在开区间 (a,b) 内至少存在一点 c,使得:f′(c)/g′(c)=f(b)−f(a)/(g(b)−g(a))

4、洛必达法则

        洛必达法则用于求解不定型极限问题,分子和分母都趋向于零(即 0/0 型)或分子和分母都趋向于无穷大(即 ∞/∞ 型)的情况。洛必达法则通过求导数来简化这些极限的计算。

四、函数的单调性

1、递增

        如果函数 f(x) 在区间 (a,b) 上可导,并且对于区间 (a,b) 内的任意 x,总有 f′(x) ≥ 0,则函数 f(x) 在区间 (a,b) 上是递增的。如果 f′(x)>0,则函数 f(x)在区间 (a,b) 上是严格递增的。

2、递减

        如果函数 f(x)在区间 (a,b) 上可导,并且对于区间 (a,b) 内的任意 x,总有 f′(x) ≤ 0,则函数 f(x) 在区间 (a,b) 上是递减的。如果 f′(x) < 0,则函数 f(x) 在区间 (a,b)上是严格递减的。

五、函数的凹凸性

1、凹函数

        如果函数 f(x) 在区间 (a,b) 上二阶可导,并且对于区间 (a,b) 内的任意 x,总有 f′′(x) ≥ 0,则函数 f(x) 在区间 (a,b) 上是的。

2、凸函数

        如果函数 f(x) 在区间 (a,b) 上二阶可导,并且对于区间 (a,b) 内的任意 x,总有 f′′(x) ≤ 0,则函数 f(x) 在区间 (a,b) 上是的。

3、拐点

        拐点是函数图像从凹变凸或从凸变凹的点。对于函数 f(x),如果 f′′(x)=0 且 f′′(x) 在 x 的两侧符号相反,则 x 是函数的拐点。

 六、极值

1、极值 

        其定义域内的某个局部区间内的最大值或最小值。极值分为局部极大值和局部极小值。如果存在一个区间 (a,b),使得对于所有 x∈(a,b)总有 f(x) ≤ f(c),则称 f(c)是函数 f(x) 在点 c 处的局部极大值。

2、最值

        最值是指函数在其整个定义域内的最大值和最小值。最值分为全局最大值和全局最小值。

3、充分必要条件

        必要条件:如果函数 f(x) 在点 x=c 处取得局部极大值或局部极小值,并且 f(x) 在 x=c处可导,则 f′(c)=0。换句话说,极值点必须是函数的驻点

        充分条件一阶导数:在某点左右两侧的一阶导数符号相异(即一正一负),则该点为局部极大值或局部极小值

                          二阶导数:某点 一阶导数 等于零, 且二阶导数小于零,则为局部极大值,二阶导数大于零,为局部极小值

### 高等数学中的微分方程教程与解题方法 #### 一阶线性微分方程的解法 对于形如 \( \frac{dy}{dx} + P(x)y = Q(x) \) 的一阶线性微分方程,其中 \(P(x)\) 和 \(Q(x)\) 是已知函数。当 \(u\) 是关于 \(x\) 的函数时,\(u\) 参与到对 \(x\) 的求导过程中来[^1]。 为了找到通解,可以采用积分因子的方法。设积分因子为 \(e^{\int P(x) dx}\),则乘以此因子后的方程左侧可化作完全微商形式: \[ e^{\int P(x) dx} \left( \frac{dy}{dx} + P(x)y \right)=\frac{d}{dx}(ye^{\int P(x) dx})=Q(x)e^{\int P(x) dx}. \] 接着通过不定积分得到最终的结果并加上任意常数项作为特解的一部分。 #### 判断全微分方程及其处理方式 给定一个微分表达式 \(M(x,y)dx+N(x,y)dy=0\),如果存在连续偏导数使得 \(\partial M/\partial y=\partial N /\partial x\) 成立,则此方程称为全微分方程。此时可以通过寻找势能函数或者直接利用路径无关性质来进行解答[^2]。 具体操作上可以选择合适的起点至终点构建曲线积分,并确保所选路线不影响结果;也可以先分别就两个变量做部分积分再调整使两者相匹配从而获得完整的原函数表示。 #### 二阶线性齐次微分方程简介 考虑标准形式下的二阶线性齐次ODE: \[ a_2(x)y''+a_1(x)y'+a_0(x)y=0,\quad (a_i\text{ are constants or functions of }x). \] 这类问题通常涉及特征多项式的根分析以及相应基底的选择来构成一般解的形式。特别地,在系数均为实数的情况下,依据不同类型的根(单重、多重或共轭复根),会有不同的组合模式用于描述系统的动态行为特性。 ```python from sympy import symbols, Function, Eq, dsolve x = symbols('x') y = Function('y')(x) # Example equation: y'' - 3*y' + 2*y = 0 eq = Eq(y.diff(x,x)-3*y.diff(x)+2*y, 0) solution = dsolve(eq, y) print(solution) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值