自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(766)
  • 收藏
  • 关注

原创 字节发了个机器人全能大模型,从零基础入门到精通,一篇搞定Robix机器人模型全解析!

文章介绍了字节推出的Robix视觉-语言单模型,该模型采用思维链推理和三阶段训练策略,能够同时处理机器人的推理、任务规划和自然语言交互,避免了传统机器人系统中模块间的信息代沟。测试显示,Robix在空间理解任务和基准测试中表现优异,超越了许多知名模型,为机器人领域提供了更高效的解决方案。机器人终于不用散装大脑了!字节Seed一个模型就能搞定机器人推理、任务规划和自然语言交互。经常做机器人的朋友都知道,以前想让机器人干活,得先解决一个烦人的问题——模块之间的信息代沟。

2025-09-11 11:49:31 603

原创 AI大模型幻觉解析(非常详细)从原理到解决方案,一篇读懂并收藏!

OpenAI研究揭示了语言模型产生幻觉的根本原因:当前训练和评估机制奖励猜测而非不确定性表达。预训练阶段的统计必然性、数据稀缺性和模型表达能力不足埋下幻觉种子,后训练阶段的二元评分机制进一步强化了这一问题。研究提出通过修改评分规则,允许模型在不确定时选择"不知道",从而减少幻觉。小型模型可能更容易认识到自身局限性,而准确性永远无法达到100%,因为有些问题本质上是无法回答的。相信很多同学都遇到过——问大模型一个冷门知识,它会一本正经地给出完全错误的答案。

2025-09-11 11:42:16 667

原创 百度发布文心大模型X1.1,多项能力超越DeepSeek!文心大模型X1.1实战教程,一篇就够了!

百度在WAVE SUMMIT大会发布文心大模型X1.1,采用迭代式混合强化学习训练框架,事实性提升34.8%,指令遵循提升12.5%,智能体能力提升9.6%。性能超越DeepSeek R1-0528,比肩GPT-5和Gemini 2.5 Pro。同时发布飞桨核心框架3.2版本,开发者生态达2333万,为企业提供强大AI技术支持。WAVE SUMMIT 深度学习开发者大会 2025 在北京盛大举行。

2025-09-10 14:12:22 846

原创 Agent应用开发实战(超详细指南)从零基础到精通,收藏这篇就够了!

本文详细介绍了如何构建Agent应用,核心定义为Application + Agent + MCP。文章从基础应用搭建开始,讲解了Agent集成设计中的智能化、交互和MCP设计,并深入探讨了Agent开发流程,包括Task Splitter和Task Executor的具体实现。通过XML格式定义任务,结合Human-in-the-loop机制,实现了高效可靠的Agent应用开发方法。

2025-09-10 11:29:59 576

原创 AI Agent框架完全指南(超详细版)从零基础到实战,一篇全掌握,建议收藏!

曾几何时,我们还在为“写个脚本实现自动化”而兴奋不已。如今,AI 已经进化成了能够自主感知环境、做出决策并执行任务的智能体(Agent)。它不再是简单的自动化脚本,而是一个拥有“大脑”的数字化伙伴。Agent 的核心概念与优势特性说明🤖 自主性能够独立思考和行动,极大减少对人工干预的依赖👀 感知环境可以接收并理解其所在环境的信息(如数据、用户输入、API反馈)🧠 决策与规划能基于感知信息制定策略、规划复杂任务的分步执行🛠️ 执行任务。

2025-09-09 11:41:54 551

原创 Agent发展趋势?信通院发布“2025智能体十大关键词”收藏学习!Agent从入门到精通,一篇就够了!

💡 智能体技术正在重塑人机关系,从执行命令的“工具”进阶为主动服务的“伙伴”。这项变革不仅影响商业效率和用户体验,更将深刻改变各行各业的运作模式和发展轨迹。对于科技从业者来说,理解这些趋势并提前布局,或许能在即将到来的智能体浪潮中抓住先机。

2025-09-09 11:33:48 1382

原创 Dify+Neo4j+LLM大模型问答+知识图谱实战教程:从零基础到精通,一篇就够了!

本文详细讲解了大模型与知识图谱结合的问答系统构建流程,包括意图解析、SQL查询生成、Neo4j执行、结果汇总及回复。通过prompt指导大模型识别用户意图和实体,根据意图生成相应Cypher查询语句,执行查询并返回结果。文章分享了实现中的技术细节和问题解决方案,为开发者提供了完整的大模型应用实战指南。

2025-09-09 10:48:13 1033

原创 LangChain教程:历史消息管理(ChatMessageHistory)——从零到精通,小白程序员必备,收藏学习!

本文详细介绍了LangChain中的历史消息管理方法,主要讲解了如何使用ChatMessageHistory和RedisChatMessageHistory来管理和存储对话历史,以保持对话的连续性和上下文。内容涵盖了单参数和多参数的消息记录管理,以及如何使用Redis进行消息持久化存储。此外,还介绍了如何裁剪消息以适应LLM和聊天模型的有限存储能力。对于想要学习LangChain并实现对话历史管理的开发者来说,本文提供了实用的代码示例和详细的解释,是小白程序员的入门指南。

2025-09-06 10:00:00 549

原创 基于Dify的公司制度检索问答Agent实践(从零到精通,收藏必备!)

本文详细介绍了搭建公司制度检索问答Agent的必要性,针对传统制度文档检索繁琐、理解不一致和更新延迟三大问题,提出解决方案。文章核心内容涵盖Agent的核心价值、搭建流程,包括用户问题处理、知识库检索和生成回复三个关键步骤,并探讨了OCR工具选型、文档分块、Embedding模型选择等技术细节。最后,文章提出了待改进点,如合理改写用户问题和降低显存压力,旨在提升Agent的效率和用户体验。公司制度是保障企业规范运营、防范风险和提升管理效能的基石。✅ 即时精准响应:支持自然语言提问(如“员工报销期限是几天。

2025-09-05 10:56:45 593

原创 AI应用架构发展新范式

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括CSDN粉丝独家福利这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以免费领取读者福利:对于0基础小白入门:如果你是零基础小白,想快速入门大模型是可以考虑的。一方面是学习时间相对较短,学习内容更全面更集中。二方面是可以根据这些资料规划好学习计划和方向。

2025-09-05 10:41:11 643

原创 AI大模型性能优化教程(超详细)从零基础入门到精通,看这一篇就够了,建议收藏!

文章讲述了在大模型应用中处理大量数据时的效率瓶颈及优化方案。通过批量传参减少网络IO,使用多线程/多进程/异步消息实现并行处理,选择支持高频访问的模型API等方法,作者将数据处理时间从几小时缩短到二十分钟,效率提升十倍以上。在大模型应用中,处理大量数据会很容易遇到瓶颈问题,因此我们需要从各个环节进行优化。最近在处理一个RAG的知识库导入功能,功能逻辑也很简单;为了提升数据的召回率,对内容进行提炼以及标签提取,之后再对原数据和总结提炼的数据进行嵌入(embedding)并插入到向量数据库中。

2025-09-04 10:15:00 628

原创 收藏必备!AI大模型完全指南:70个核心术语系统梳理,从入门到精通

70 个术语勾勒了 AI 的完整图景:从 让机器模拟智能 的基础目标,到模型架构、训练技术的层层突破,再到应用场景的无限可能,以及伦理安全的边界探索。理解这些术语,不仅是进入 AI 领域的 敲门砖,更能帮助我们理性看待技术 —— 它不是神秘的 黑箱,而是可拆解、可理解、可驾驭的工具。随着技术迭代,新术语会不断涌现,但核心逻辑始终围绕 如何让机器更好地服务人类。如果觉得有用,欢迎转发~

2025-09-03 09:15:00 1457

原创 # 【收藏必看】字节扣子平台深度解析:AI Agent的核心概念与实战指南

本文基于字节跳动扣子平台(AI Agent)的体验,详细介绍了AI Agent的核心功能机制,包括智能体定义、提示词配置、技能与插件扩展、工作流编排、知识库管理、记忆系统等。文章分析了单Agent与多Agent模式的区别,并指出AI Agent是当前AI技术不完全成熟时期的过渡产物,未来将向具备全局思维和创造力的端到端模式发展。这些内容为开发者理解和构建AI Agent应用提供了全面参考。

2025-09-02 11:29:16 757

原创 【收藏学习】AI Agent核心思想:从感知到行动的智能闭环与实战案例

AI Agent 的工作流程是一个 “感知→思考→行动→学习” 的智能闭环。目前该领域处于爆发期,既有像 LangChain / AutoGen 这样的强大开发框架,也有 AutoGPT / BabyAGI 这样的概念先驱,更有 GPTs 这样的易用平台和 Devin 这样的专业领域标杆。优秀的 Agent 产品正在从实验走向实用,在客服、编程、数据分析、个人助理等多个领域展现出巨大潜力。衡量 Agent 好坏的核心在于其自主完成任务、有效使用工具、动态规划调整和持续学习进化的能力。

2025-09-02 11:19:12 924

原创 AI智能体教程(100问/技术/市场/团队/避坑)从零基础到落地,看这篇就够了!

AI智能体创业之路充满了未知与挑战,但也蕴藏着巨大的机遇。这份100个核心问题清单,为你在创业前提供了一个全面审视和思考的框架。当你逐一理清这些问题的答案时,你对AI智能体创业的认知会更加清晰,也能更有针对性地制定创业计划。创业从来不是一蹴而就的事情,需要不断地学习、探索和调整。希望这份清单能成为你创业路上的指南针,帮助你避开一些不必要的弯路,更顺利地开启AI智能体创业之旅。

2025-08-25 11:22:30 928

原创 AI人才就业指南(行业危机/高薪岗位/入局策略)从传统岗位萎缩到AI赛道突围,看这篇就够了!

2025开年,AI技术打得火热,正在改变前端人的职业命运:阿里云核心业务全部接入Agent体系;字节跳动30%前端岗位要求大模型开发能力;腾讯、京东、百度开放招聘技术岗,80%与AI相关……大模型正在重构技术开发范式,最残忍的是,业务面临转型,领导要求用RAG优化知识库检索,你不会;带AI团队,微调大模型要准备多少数据,你不懂;想转型大模型应用开发工程师等相关岗,没项目实操经验……曾经React、Vue等热门的开发框架,已不再是就业的金钥匙。如果认为。

2025-08-25 10:58:25 665

原创 AI Agent构建保姆级指南(避坑+实战)从零基础到独立开发,看这篇就够了!

给你学习,我国在这方面的相关人才比较紧缺,大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。有了记忆,代理可以随着时间的推移不断改进,记住过去的行为,并做出更具凝聚力的响应。更多工具≠更好的结果。然而,成功的关键在于选择正确的工具,而不是让Agent面临太多的选择。

2025-08-22 10:52:28 848

原创 AI智能体新架构设计(MCP框架全解析)从零基础到落地实战,看这篇就够了!

和。这两个术语听起来很相似,甚至有重叠之处,但它们解决的是完全不同的问题。今天,我将深入剖析这两个概念:它们是什么,各自的优势在哪里,以及为什么理解它们的区别对我们构建更持久的 AI 系统至关重要。下文我们详细剖析之。11、AI 智能体:思考、行动、重复是一个利用大语言模型来思考目标并采取行动的系统,通常会形成一个循环。:例如“帮我订一张去巴黎的机票”。:例如“搜索航班 → 比较价格 → 订票”。:使用工具、API 等。。

2025-08-22 10:21:48 973

原创 企业级AI Agent全链路架构设计:从数据采集到智能决策的闭环实战,避坑指南+架构图解!

RAG系统巧妙地采用了双阶段检索机制来精确锁定所需信息。在粗排阶段,通过利用高效的倒排索引技术,系统能够迅速筛选出与查询相关的文档集合,大大缩小了搜索范围。而在精排阶段,则采用Cross-Encoder评估每个段落与查询之间的相关性,确保了信息的准确性和相关性。此外,知识更新模块的设计十分巧妙,它实时监控数据源的变化情况。一旦检测到有新的FDA新药审批公告发布,就会立即触发向量库的增量更新过程,从而保证系统输出的信息始终保持最新状态。

2025-08-20 11:18:21 1974

原创 告别繁琐!MCP+自然语言驱动n8n workflow:3步搞定RAG部署,效率提升10倍!

在探讨n8n-mcp之前,我们需要理解两个基础概念:开源工作流平台n8n是个开源的工作流自动化平台,其优势在于它的可扩展性和灵活性。n8n的源代码始终可见,确保了完全透明度。它可以自由部署在任何环境中。支持自定义节点和功能扩展,满足个性化需求。mcp协议:AI调用工具的万能接口Model Context Protocol(mcp)是连接AI模型与外部工具的标准化协议 它解决了一个关键问题:如何让AI助手真正理解和操作复杂的外部系统?

2025-08-20 10:39:31 898

原创 提示词与上下文工程(保姆级教程)官方学习路径全解析,看这一篇就够了!

给你学习,我国在这方面的相关人才比较紧缺,大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。在与AI的交互中,我们最需要保持的是,用比AI更提前的全景思维,经过“已知求未知”的AI交互,拿到我们想要的东西。要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

2025-08-17 09:30:00 761

原创 AI Agent工程量为何远超想象?(保姆级避坑指南)从根源剖析到高效构建,看这一篇就够了!

研究报告与行业分析一再提示:agent 的产业化不是简单的“把模型接到 API”,而是把模型嵌入到复杂的软件工程、运维、安全与治理体系中。给你学习,我国在这方面的相关人才比较紧缺,大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!研究与从业报告指出,要实现可靠的 agent,需要新型的测试方法(如基于场景的长期验收、对抗测试、在线金丝雀发布等),这些都会拉长开发与维护周期。

2025-08-16 11:30:57 1018

原创 本地部署AI大模型(保姆级教程)vLLM从零基础到性能优化,看这一篇就够了!

在云服务器的数据盘里,新建一个“LLM”文件夹,专门用来存放模型,同时,在根目录下,新建一个“download.py”文件,将刚刚复制的代码复制进去,这里需要注意的是,model_dir里,是直接缓存到云服务器上,我们后面需要使用该模型,所以在模型后面增加一个“catch_dir”,制定下载路径,这里我把模型下载到我刚刚新建的LLM文件夹下。这里需要注意的是,python文件里的端口号需要改成vllm里的8000,另一个,虽然本地模型其实是没有apikey的,但是框架是要求必须有,所以这里随便写一个就行。

2025-08-16 10:56:01 811

原创 构建可靠AI Agent(保姆级教程)从提示词到知识库,手把手实战指南,看这一篇就够了!

Agent系统由五个关键组件构成:大语言模型(LLM)提示词(Prompt)工作流(Workflow)知识库(RAG)工具(Tools)LLM和工具调用已经形成了相对标准化的技术栈。LLM方面,无论选择云端大模型(如阿里百炼平台、IdeaLab)还是本地部署(如Ollama),都有成熟的解决方案;工具调用方面,MCP协议的普及让工具集成变成了配置问题而非开发问题。因此,业务开发的核心竞争力在于提示词 + 工作流 + 知识库上。

2025-08-15 22:06:58 777

原创 企业级RAG实战(保姆级教程)从零搭建FastMCP服务,看懂模型上下文协议,看这一篇就够了!

在企业级的RAG系统落地过程中,成为了关键挑战。在本次实践中,我基于 FastMCP 工具,尝试构建一个完整的,并将其引入企业RAG架构中,探索其在复杂工具链调度、上下文保持、智能决策等方面的能力。为什么选择 FastMCP?FastMCP 是对 MCP 协议的轻量实现,支持标准化的能力注册、健康检查、工具调用等接口。

2025-08-15 21:20:13 830

原创 AI大模型RAG系统教程(智能体重构版)从零基础入门到精通,看这一篇就够了!

因为大模型本身的限制问题,导致大模型缺少部分资料,因此在咨询大模型具体的问题之前,需要先找到问题相关的文档,然后告诉大模型,大模型才能回答我们的问题;给你学习,我国在这方面的相关人才比较紧缺,大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!所以,相较于传统的RAG技术,基于智能体的RAG技术有更强的自主性,更强的灵活性,以及更强的扩展性。检索和生成,而检索的目的是为了增强生成的质量。

2025-08-14 11:23:56 1696

原创 AI Agent Prompt教程(设计原理+实战技巧)从零基础入门到精通,看这一篇就够了!

没有好的Prompt,再强的模型也是“无头苍蝇”,反之精准的Prompt,能让Agent从机械的执行流程中解放出来,升级为可以灵活应变的智能工具,是低成本释放AI潜力的核心钥匙,更是中小企业的福音!对于搭建智能体的人来说,掌握Prompt的设计非常重要,也是“用最低成本让AI Agent听话”的关键!给你学习,我国在这方面的相关人才比较紧缺,大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!

2025-08-14 11:01:16 582

原创 学习 RAGFlow 的文件上传逻辑

在上一篇中,我们学习了 RAGFlow 的系统架构和启动流程,了解了 RAGFlow 的和两大核心组件,一个负责提供外部接口和平台基本功能,另一个则负责文件的解析和切片处理。从系统架构图中,我们可以看到 RAGFlow 的核心流程包括->->->->->这些步骤,今天我们就从源码的角度,先来学习下文件上传的相关逻辑。

2025-08-13 14:04:58 1044

原创 企业场景下大模型AI应用具体案例(二)——征服AI幻觉!Dify+RAGFlow打造企业级精准决策引擎

通过与RAGFlow的API深度集成,系统可在处理非结构化数据的同时,实现语义层面的精准匹配,充分发挥“数据+语义”双轮驱动的优势,为企业提供更高质量的智能检索服务。给你学习,我国在这方面的相关人才比较紧缺,大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。

2025-08-13 11:10:41 504

原创 LangGraph实战教程-多智能体架构(Multi-Agent)

大模型多智能体系统(Large Model Multi-Agent System) 是由多个基于大语言模型(LLM)的智能体(Agent)组成的协作系统。每个智能体具备独立的任务处理能力,通过协同工作解决单一智能体难以完成的复杂问题。其核心特征包括:• 分布式协作:智能体通过通信、协商或竞争实现目标。• 角色分工:不同智能体承担专业角色(如决策者、执行者、验证者)。• 共享状态管理:使用共享内存、消息传递或黑板机制同步信息。• 动态工作流:任务根据上下文在智能体间动态流转。

2025-08-12 11:18:43 875

原创 做了两年AI Agent,我发现99%的AI Agent项目都死在了Message Flow设计上

最近和几个AI创业的朋友聊天,发现一个有趣的现象:大家都在搞Agent,但聊起具体实现时,基本都在Message Flow这个环节栽过跟头。说实话,我自己也踩过这个坑。两年前刚开始做Agent产品时,觉得不就是让模型调用几个API嘛,有多难?结果发现,真正的难点不在模型调用,而在于如何设计一个稳定、可扩展的消息流架构。今天想跟大家聊聊这个话题,算是给准备入坑或者正在坑里的朋友们一些参考。

2025-08-12 11:04:18 656

原创 落地视角:大模型分类体系与应用场景选择

然后是推理增强大语言模型,顾名思义就是在基座大语言模型基础上,进行专门的微调和强化学习来增强其深度推理能力,典型表象就是它有思考Thinking过程,最早是OpenAI的O1系列带动,年初DeepSeek R1开源让它发扬光大,大热之后,然后3月份千问就紧急开源了Qwq-32B模型,当然现在回头再看,它应该是Qwen3正式发布之前的过渡模型。截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。这三弹和五一前发布的Qwen3模型啥关系?

2025-08-01 11:52:33 752

原创 AI 基础知识从 0.4 到 0.5—— 计算机视觉之光 CNN

本文系统回顾了计算机视觉的发展历程,从早期基于手工特征的传统方法,到深度学习的崛起与卷积神经网络(CNN)的广泛应用,并通过数学原理、代码示例与可视化手段,全面解析了卷积操作的本质与CNN的架构设计。

2025-08-01 11:22:00 1033

原创 在RAG中文档处理质量参差不齐的情况下——提升召回精度的企业级解决方案

而这种情况下,大模型的表现肯定会比小模型要好,这也是为什么在前面强调说是大模型,而不是小模型的原因。给你学习,我国在这方面的相关人才比较紧缺,大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!原因在于随着大模型技术的发展,大模型的能力也变得越来越强,因此在某些情况下人工做的并一定比模型做的好,特别是这种对文档进行处理的场景,模型根据语义对文档进行拆分或处理,或许比人工做的要更好。

2025-07-30 15:00:23 605

原创 GPT-5「全家桶」爆出本周上线!惊艳首测秒出网页,编程彻底起飞

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。给你学习,我国在这方面的相关人才比较紧缺,大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战项目来学习。

2025-07-30 14:26:20 644

原创 Grok 4:人工智能巅峰之作——语音与视频模式双开,打破沟通局限

这得益于整个堆栈的创新,包括新的基础设施和算法工作,这些工作将训练的计算效率提高了 6 倍,以及大规模的数据收集工作,XAI将可验证的训练数据从主要的数学和编码数据显著扩展到更多领域。只需对准摄像头,立即说话,Grok 就能实时洞察,分析你的场景,并在语音聊天体验中实时响应你的需求。给你学习,我国在这方面的相关人才比较紧缺,大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!

2025-07-29 12:07:00 1738

原创 收藏!一篇Graph+AI Agents最新技术综述

最近出了一篇关于图(Graphs)与人工智能代理(AI Agents)结合的综述性研究,提出了一个分类框架来组织这一领域的研究进展,详细讨论了图技术在AI代理的规划、执行、记忆和多代理协调等核心功能中的作用。Graph与AI Agents相结合的总体示意图。图方法论:利用图进行图数据组织和知识提取人工智能代理方法论:基于大型语言模型(LLM)的基础模型和基于强化学习(RL)的学习范式,构成了人工智能代理的核心流程人工智能代理用于图:代理在图建模和学习方面的强大能力,例如图注释、合成和理解。

2025-07-29 11:58:23 852

原创 RAG效果秘籍:别再只盯着LLM性能?先让大模型读懂文档!

从今年初Deepseek的爆火,到如今被冠以“AI Agent”元年的称号,今年已让无数企业看到了AI在辅助办公上的应用价值,纷纷投入到AI数智化转型的方向上,其中搭建企业知识库就是一条热门“赛道”。根据联想集团与IDC联合发布的《全球CIO报告》,2025年全球企业AI支出规模将达到2024年的近3倍,其中42%的资金涌向生成式AI(2024年仅占11%)。从数据上可以看出全球企业LLM的投入规模和增速在今年飞速提升,全面拥抱AI已成为企业间共识。

2025-07-26 13:41:12 521

原创 一文搞懂大语言模型如何进化为多模态大模型?

(1)文本数据的特点:离散的token序列,维度相对较低(2)图像数据的特点:连续的像素矩阵,维度高且具有空间结构(3)音频数据的特点:时序连续信号,具有频域和时域特征大语言模型的处理单元是Token(词块),从大语言模型进化为多模态大模型的关键是把所有信息都转换成Token。:天然就是Token序列:切块变Token把图片分割成16×16像素的小块每个图块编码成一个视觉Token一张224×224的图片 → 196个视觉Token:切段变Token按时间窗口分割音频。

2025-07-26 11:45:46 943

原创 AI智能体的12种变现方式,入局早的已经月入10W了

给你学习,我国在这方面的相关人才比较紧缺,大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。• 常见案例:写作助手(普通版免费,高级版99元/年)、行业分析师(基础问答免费,深度报告收费)、测评工具(基础功能免费,详细分析收费)。成本低,利润高,适合刚入门的朋友。

2025-07-24 11:07:59 1514

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除