- 博客(11)
- 收藏
- 关注
原创 numpy学习总结1
np.column_stack,按照列方向进行堆叠,对于一维数组,会先在列方向上增加维度,对于二维数组则不会改变维度,与np.hstack的区别在于,对于一维数组,np.hstack不会在列方向上增加维度,而np.column_stack会先在列方向上增加维度。np.dstack,在第三个方向上进行堆叠,如果给定的数组维度不足3,则先补齐。
2025-06-02 18:26:05
210
原创 kmeans学习总结
答:原因在于k-means预测指标的随机性,假设,我们有一组数据x,对应的真实y分别是 0 0 1 1,但是在k-means聚类算法中,首先随机选择了2个(假设n_cluster为2)聚类中心,对于每一个x,分别分类到一个聚类中心,如果对于真实值y为1的x,分配的标签是0,而对于真实值y为0的x,分配的标签是1,最近在学k-means,k-means的原理很多博主都讲了,我这里不再赘述,这篇文章主要有两个目的,第一个目的是记录一下手搓k-means算法,第二个目的是分享下k-means算法的评价指标-
2025-05-30 00:23:27
161
原创 PCA主成分分析学习总结
对 CC 进行特征分解,得到特征值 λ1≥λ2≥⋯≥λdλ1≥λ2≥⋯≥λd 和对应的特征向量 v1,v2,…这里 A=VA=V,B=ΛVTB=ΛVT,因此 trace(VΛVT)=trace(ΛVTV)trace(VΛVT)=trace(ΛVTV)。总方差=∑i=1dλi=trace(C)=∑j=1dVar(Xj)总方差=i=1∑dλi=trace(C)=j=1∑dVar(Xj)协方差矩阵 CC 的特征值分解为 C=VΛVTC=VΛVT,其中 ΛΛ 为对角矩阵(元素为 λiλi)。
2025-05-28 00:11:18
583
原创 tensorflow通过tf.keras.preprocessing.image.ImageDataGenerator创建数据集
这种方式可以直接读取分类文件夹里面的内容,并根据文件夹的名称生成相应的数据集generator.flow_from_directory
2023-04-05 14:59:56
282
1
原创 pytorch创建dataset的第二种方式
第二种方式是通过自定义dataset类,读取数据,然后区分训练数据和测试数据自定义类有两个要点,第一个要点是继承的父类是torch.utils.data.Dataset,第二个要点是要重写collate_fn并且在DataLoader中指定collate_fn=LEI.collate_fn
2023-04-05 14:31:09
321
1
原创 pytorch创建dataset的两种或方式
在pytorch中创建dataset的两种方式,第一种方式是通过torchvision.dataset.ImageFolder读取数据,然后再利用torch.utils.data.DataLoader第二种方式是继承torch.utils.data.Dataset类,重写__getitem()__和__len__以及静态方法collate_fn,其中collate_fn还需要通过from torch.utils.data.dataloader import default_collate进行处理
2023-04-05 14:29:41
760
4
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人