目录
前言
人工智能与机器学习之间的关系,本文针对人工智能与机器学习、强化学习、深度学习的一些概念进行了直观的描述,不涉及具体技术的推导,后期会根据学习内容对现有的知识进行详细的推导和描述,本文的主要目的是培养大家对于一些概念的直观感觉,清晰相应的概念,便于后续的学习,适合新手观看。
一、人工智能是什么?
(一)人工智能概念
首先,人工智能的定义就是指人制造出来的机器所表现出。建来的智能构能够跟人类相似甚至超卓的推理知识、规划、学习、交流、感知、移物、使用工具和操控机械的能力等。
人工智能的英文由两部分构成,一个是Artificial,一个是Intelligence。Artificial就是指由人工制造的,Intelligence是指机器自主学习及解决问题的能力。取各自的首字母就是AI,用最简单的语言来说,AI就是机器对人类智能的模仿,使得机器可以像人类一样进行思考行动,解决复杂问题。
(二)人工智能应用
人工智能设计的领域非常多,车辆识别、人脸识别、自动驾驶、机器翻译、人机互动、智能机器人、Deepseek大模型、AI医疗和金融以及智能机器人等都属于人工智能的范畴。例如AI医疗,通过建立专家系统模型,将数百万份带有标签的CT数据集输入进行训练之后,就可以得到一个经验丰富的AI医生,可以准确识别CT中的各种异常,得出报告结论。 人工智能的一个特点就是可以自我优化,迭代升级。
(三)强弱人工智能概念
首先,我们先明确弱人工智能和强人工智能的概念。
弱人工智能:就是指为了某项技能特定技能开发的AI应用程序。弱是指专注于某项任务,例如人脸识别、聊天机器人、语音助手等,现在我们树熟知的Deepseek大模型也属于弱人工智能的范畴,他是专门编程用于处理语言文本的。网上有些人说它属于AGI其实是不准确的,但是确实朝着AGI的方向跨越了一大步,但是还有很大的差距。
强人工智能:也称为通用型人工智能,也就是我们常说的AGI。它描述的是一种人工智能达到的理想状态,即人工智能可以处理各种复杂问题,类似我们科幻片里面看到的一些智能机器人。
(四)人工智能实现方法
其次,人工智能的实现方法有两种,一种是符号学习,一种是机器学习,符号学习是指基于逻辑和规则的方法,按照if…then的原则执行任务,无法进行动态优化,例如早期的专家系统就属于符号学习的范畴。之后就是机器学习,机器学习是指从数据中寻找规律,依据寻找到的规律处理问题。主要依靠大量的数据进行自我的优化升级,对数据的依赖性很大,也就是我们常说的数据驱动,也是当前的主流AI学习算法。
(五)人工智能发展历程
总结来说,人工智能的发展经历了三个阶段,第一个阶段就是计算智能,巨能算,计算机的计算能力远远大于人类。1950年:图灵提出了“机器思考”设想,开始了人工智能的探寻,在1956年确立了“AI”的概念,进行了符合主义的早期研究,也就是我们上面讲的符号学习。之后基于符号学习诞生了专家系统,之后人工智能发展陷入了瓶颈。之后由于神经网络的发展,人工智能进入了感知智能阶段,机器能通过数据学习完成特定的任务,也能干,例如语音识别、图像识别等。最后是我们现在所处的通用智能阶段,就是机器什么也能干。当然现有的AI技术称不上完全的通用智能,但是例如大模型等,可以基于原有的数据生成一些内容,生成式AI逐渐普及。这也是现阶段人工智能的发展方向。
二、机器学习
机器学习:通过算法和模型从数据中寻找规律来解决问题,而不是简单的执行程序来进行判断。机器学习的三大任务可以分为回归、分类以及聚类,回归产生连续的结果,根据以往经验进行连续的数据预测。分类产生离散结果,可以理解为有标签的分类,产生识别的任务,图像识别,车辆识别等;聚类可以理解为无标签的分类,即指找数据之间的联系,根据数据特征进行分类。分类与回归都是根据现有数据建立预测模型,给定输入得到输出,不过回归是连续的,而分类是离散的。
强化学习:是一种通过智能体与环境交互进行学习的方法。具体可以看链接:
强化学习基础概念及学习路径https://blog.csdn.net/h320130/article/details/143946867监督学习和无监督学习:根据数据集有无标签可以分为监督学习和无监督学习
深度学习:是指基于神经网络进行数据学习的一种方法。
各种学习方法之间的关系如下图所示:
三、神经网络
神经网络:神经网络是仿照人的神经元结构建立的,利用数字模型建立的网络。可以看作一个黑盒,能够处理数据集,通过拟合等方法得到输入数据和输出数据之间的联系。
损失函数:用来衡量神经网络拟合好坏的函数。
梯度下降:用来优化损失函数,通过调整参数得到最小损失的算法。
反向传播:求解损失函数梯度的方法。
根据连接方式的不同,神经网络可以分为前馈神经网络和反馈神经网络:
(一)前馈神经网络
前馈神经网络:每层的神经元接收前一级输入,并输出到下一级,直至输出层。
卷积神经网络(CNN):利用卷积和池化降低数据维度,进行图像处理的网络。
全连接神经网络(FCN):最基础的神经网络结构,它由多个神经元组成,这些神经元按照层级顺序连接在一起。每一层的每个神经元都与前一层的每个神经元连接。
生成对抗网络(GAN):专门用于生成图像的网络,由一个鉴别器和一个生成器组成,生成器的作用是降低鉴别器的性能,生成逼真的图片。
(二)反馈神经网络
反馈神经网络:神经元不但可以接收其他神经元的信号,而且可以接收自己的反馈信号。
循环神经网络(RNN):具有环盒子重复,可以储存信息,用来处理顺序任务。
长短期记忆网络(LSTM):为了防止梯度爆炸或者消失,增加了内存块,也用来处理顺序任务。
总结
以上就是今天要讲的内容,本文仅仅简单介绍了人工智能领域的一些简单概念,适合新手进行概念梳理和理解,针对具体领域的技术,大家可以根据自己的兴趣和爱好进行专门领域的学习。