基于脑电图信号的复杂脑网络构建与麻醉状态评估
1. 引言
麻醉是手术中不可或缺的环节,能确保患者在无意识状态下接受手术。然而,目前麻醉深度的评估尚无“金标准”,传统评估主要依赖麻醉师的主观判断,易受患者个体差异和麻醉师心理生理状况影响而产生误判。脑电图(EEG)具有高时间分辨率的优势,对麻醉药物敏感,基于EEG检测监测麻醉深度有坚实的理论基础。因此,合理构建脑连接网络系统并实时监测以评估麻醉状态具有重要的科学价值。本文提出结合机器学习的脑连接网络系统来评估麻醉状态。
2. 基于脑电图信号的复杂脑网络构建
2.1 脑电图信号的采集
EEG信号是脑神经细胞整体活动的综合外在表现,包括离子交换、代谢等。大脑皮层的神经细胞活动产生的电信号不断调整头皮表面电位,从而产生EEG信号。当大脑处于不同状态(如睡眠、麻醉)时,EEG信号有显著差异。
本研究使用的EEG数据来自BCIcompetitionIV公共数据集,包含14名接受全身麻醉手术的患者和14名处于静息状态的健康对照者的EEG信号。采用国际脑电图学会规定的10 - 20系统的电极放置方法采集信号,该方法操作简单、采集高效且对采集者无损伤。电极系统的对应关系如下表所示:
| 部位 | 电极代码 |
| ---- | ---- |
| 额部 | Fp1, Fp2 |
| 区域 | F3, F4, Fz |
| 中央 | C3, C4, Cz |
| 顶部区域 | P3, P4, Pz |
| 枕部区域 | O1, O2 |
| 侧面 | F7, F8 |
| 颞区 | T3, T4 |
| 后颞区 |