高斯与LoG滤波器

本文介绍了高斯滤波器和LoG滤波器在图像处理中的作用,特别是用于降噪。高斯滤波器通过高斯分布权重对像素进行平滑处理,而LoG滤波器则是先用高斯滤波减少噪声,再用拉普拉斯算子增强边缘。文中提供了相关滤波器的公式及其实现代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

高斯与LoG滤波器


高斯滤波器:

使用高斯滤波器(7×77\times77×7)大小,对fate.jpeg进行降噪处理。

高斯滤波器是一种可以使图像平滑的滤波器,用于去除噪声。它将中心像素周围的像素按照高斯分布加权平均进行平滑化。这样的(二维)权值通常被称为卷积核(kernel)或者滤波器(filter)

考虑到图像的长宽可能不是滤波器大小的整数倍,我们需要在图像的边缘补000。这种方法称作Zero Padding。并且权值ggg(卷积核)要进行归一化操作(∑ g=1\sum\ g = 1 g=1)。

按下面的高斯分布公式计算权值:
g(x,y,σ)=12 π σ2 e−x2+y22 σ2 g(x,y,\sigma)=\frac{1}{2\ \pi\ \sigma^2}\ e^{-\frac{x^2+y^2}{2\ \sigma^2}} g(x,y,σ)=2 π σ21 e2 σ2x2+y2

标准差σ=1.3\sigma=1.3σ=1.38−8-8近邻高斯滤波器如下:
K=116 [121242121] K=\frac{1}{16}\ \left[ \begin{matrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{matrix} \right] K=161 121

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值