python可视化(基于pyecharts)学习笔记

本文详细介绍了如何在Python中利用pyecharts库下载并引用,以及如何进行全局配置,包括初始化配置、标题、区域缩放、图例、视觉映射、提示框工具、坐标轴等,展示了各种图表如柱状图、饼图、折线图等的创建方法。

pyecharts

1、下载pyecharts第三方库

2、引用pyecharts

3、运行

这边写了一个样例代码,然后点击运行,之后会出现一个.xml的文件

4、在本地浏览器打开

复制.html的路径在浏览器打开,

全局配置项

1、初始化全局配置

c ={

    Bar(

        #InitOpts:初始化配置项

        init_opts=opts.InitOpts(

            width='800px',

            height='800px',

            renderer=RenderType.CANVAS, #渲染风格,可选:

            page_title='网页标题',

            theme=ThemeType.WALDEN  , #主题

            bg_color='blue'

        )

    )

    .add_xaxis(Faker.choose())

    .add_yaxis('商家A',Faker.values())

    .add_yaxis('商家B',Faker.values())

    .render("生成图表.html")

}

2、标题配置项、区域缩放配置项

  .set_global_opts(

        # 标题配置项

        title_opts=opts.TitleOpts(

            title='柱形图', #主标题

            title_link='https://www.baidu.com',

            title_target='blank',

            subtitle='副标题',

            # 位置

            pos_left='left',

            padding=10,   #内边距

            item_gap=10,   #主副标题间隙

        ),

        # 区域缩放配置项

        datazoom_opts=opts.DataZoomOpts(

            is_show=True,

            type_='slider', #组件的类型

            is_realtime=True, #拖动时图标实时更新

        )

    )

3、图例配置项

  #图例配置项

        legend_opts=opts.LegendOpts(

            is_show=True,   #图例显示

            pos_left='center', #位置

            orient='vertical',  #图例垂直

            selected_mode=True,  #图例点击

            align='auto',  #图例与文字对齐方式

            item_height='',

            item_width='',

            legend_icon='circle'  #图标形状

        )

4、视觉映射

 #视觉映射配置项

        visualmap_opts=opts.VisualMapOpts(

            is_show=True,

            type_='color', #color   size

            min_=0,

            max_=100,

            range_opacity=0.5,  #透明度

            range_text=['max','min'],#两端文本

            range_color=[] ,  #过渡颜色

            is_piecewise=True,   #分段型

        ),

5、提示框工具

 #提示框工具

        tooltip_opts=opts.TooltipOpts(

            is_show=True,

                 ………

        )

6、坐标轴配置项、提示线

 #坐标轴配置项

        xaxis_opts=opts.AxisOpts(

            is_show=True,

            #...

        ),

        yaxis_opts=opts.AxisOpts(

            is_show=True,

        ),

        #提示线

        toolbox_opts=opts.TooltipOpts(trigger='axis')

系列配置项

1、图元、线、标签样式配置项

        #图元样式配置项

        itemstyle_opts=opts.ItemStyleOpts(

            color='blue',

            #.......

        ),

        #线样式配置项

        linestyle_opts=opts.LineStyleOpts(

            is_show=True,

            width=0,

            color='yellow',

        ),

        #标签样式配置项

        label_opts=opts.LabelOpts(

            #....

        ),

2、标志点、标志线配置项样式

 markpoint_opts=opts.MarkPointOpts(

            data=[

                opts.MarkPointItem(type_='max',symbol='pin',symbol_size=50),

                opts.MarkPointItem(type_='min'),

            ]

        ),

        #标记线

        markline_opts=opts.MarkLineOpts(

            #.....

        )

常用图形

一、柱状图

1、基本状图

from pyecharts.charts import Bar

import pyecharts.options as opts

from pyecharts.faker import Faker

Faker.choose()

Faker.values()

c = (

    Bar()

    .add_xaxis(Faker.choose())

    .add_yaxis('A',Faker.values())

    .add_yaxis('b',Faker.values())

    .render("生成图表.html")

)

2、堆叠柱状图

    .add_yaxis('A',Faker.values(),stack='a')   #堆叠柱状图

    .add_yaxis('b',Faker.values(),stack='a')

3、条形图

    #条形图

    .reversal_axis()

4、直方图

    .add_yaxis('b',Faker.values(),stack='a',category_gap='0')   #直方图

5、

二、饼状图

from pyecharts.charts import Pie

import pyecharts.options as opts

from pyecharts.faker import Faker

Faker.choose()

Faker.values()

data = list(zip(Faker.choose(),Faker.values()))

c = (

    Pie()

    .add('', data)

    # .add('',[list(x) for x in zip(Faker.choose(),Faker.values())])

    .render("生成图表.html")

)

三、玫瑰图

from pyecharts.charts import Pie

import pyecharts.options as opts

from pyecharts.faker import Faker

Faker.choose()

Faker.values()

data = list(zip(Faker.choose(),Faker.values()))

c = (

    Pie()

     # .add('',[list(x) for x in zip(Faker.choose(),Faker.values())])

    .add('', data,

         rosetype='radius')

   

   

    .render("生成图表.html")

)

四、折线图

1、基本折线图

from pyecharts.charts import Line

import pyecharts.options as opts

from pyecharts.faker import Faker

c = (

    Line()

    .add_xaxis(Faker.choose())

    .add_yaxis('love ',Faker.values(),is_smooth=True)

    .add_yaxis('小黑子',Faker.values())

    .render("生成图表.html")

)

2、面积图

 .add_yaxis('love ',Faker.values(),is_smooth=True,areastyle_opts=opts.AreaStyleOpts(opacity=0.5))   #面积图

五、散点图

from pyecharts.charts import Scatter

import pyecharts.options as opts

from pyecharts.faker import Faker

c = (

    Scatter()

    .add_xaxis(Faker.choose())

    .add_yaxis('',Faker.values())

    .add_yaxis('',Faker.values())

    .render("生成图表.html")

)

六、雷达图

from pyecharts.charts import Radar

import pyecharts.options as opts

from pyecharts.faker import Faker

v1 = [[500,600,450,320,500,600]]

v2 = [[450,300,500,600,340,260]]

c = (

    Radar()

    .add_schema(

        schema=[

            opts.RadarIndicatorItem(name='项目1', max_=600),

           opts.RadarIndicatorItem(name='项目2', max_=400),

           opts.RadarIndicatorItem(name='项目3', max_=700),

           opts.RadarIndicatorItem(name='项目4', max_=600),

           opts.RadarIndicatorItem(name='项目5', max_=700),

           opts.RadarIndicatorItem(name='项目6', max_=650),

        ]

    )

    .add('数据a',v1,color='red')

    .add('数据b',v2,color='green')

   .render("生成图表.html")

)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值