RuntimeError: DataLoader worker (pid 2105929) is killed by signal: Killed.

文章讨论了如何通过调整PyTorchDataLoader的num_workers参数来加速神经网络训练。当设置num_workers为非零值时,DataLoader使用子进程加载数据,但过多的子进程可能导致资源问题,如报出Killed错误。解决方案包括减小num_workers值或增加系统资源。默认情况下,num_workers设为0,表示在主进程中加载数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

PyTorch DataLoader num_workers Test - 加快速度

可以利用PyTorch DataLoader类的多进程功能来加快神经网络训练过程。

加快训练进程

为了加快训练过程,我们将利用DataLoader类的num_workers可选属性。

num_workers属性告诉DataLoader实例要使用多少个子进程进行数据加载。默认情况下,num_workers值被设置为0,0值代表告诉加载器在主进程内部加载数据。

问题描述:

RuntimeError: DataLoader worker (pid 2105929) is killed by signal: Killed.
在这里插入图片描述

这个报错和DataLoader有关,定位到训练脚本中的代码:

在这里插入图片描述

问题分析

  • 通过设置num_workers,DataLoader实例可以使用多少个子进程进行数据加载,从而加快网络的训练过程。
  • 默认情况下,num_workers值被设置为0,0值代表告诉加载器在主进程内部加载数据。
  • 但是num_workers并不能无限制设置的很大,因为这和你的机器硬件性能也有关。

问题解决

  • 最简单的办法,就是将num_workers设置的小一点;
  • 如果还是有问题,可以直接将num_workers设置成默认值0;
  • 当然,也可以通过增加机器内存来尝试解决。

参考资料:
PyTorch DataLoader Num_workers-深度学习限速提升(pytorch系列-29)
RuntimeError: DataLoader worker is killed by signal: Killed.报错解决

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值