大O算法是比较算法以及特定情况下最优解算法的最佳工具,但也并不是唯一的工具。很多时候两个算法时间复杂度相似,但运行效率却不同。下面基于数组,以选择排序为例,来和冒泡排序进行对比说明。
步骤
- 从索引0开始检查数组的每一个元素,找出最小值。用一个变量记录最小值所在的索引。在进行比较的过程中,如果某个索引处的数组值比最小值小,那么就更新变量中存储的索引;
- 确定了最小值所在索引后,交换最小值和最初遍历的值所在的位置,例如第一次检查的是索引0,第二次检查的是索引1,以此类推;
- 每次遍历,都要执行步骤(1)和(2),不断遍历,直到某次遍历起始于数组的末尾,此时数组排序完成。
以上既是数组的选择排序。
代码实现如下:
#include <iostream>
#include <vector>
void selectionSort(std::vector<int>& arr) {
int length = arr.size();
for (int i = 0; i < length - 1; i++) {
int minIndex = i;
for (int j = i + 1; j < length; j++) {
if (arr[j] < arr[minIndex]) {
minIndex = j;
}
}
if (minIndex != i) {
std::swap(arr[i], arr[minIndex]);
}
}
}
void printArray(const std::vector<int>& arr) {
for (int num : arr) {
std::cout << num << " ";
}
std::cout << std::endl;
}
int main() {
std::vector<int> arr{ 64, 25, 12, 22, 11 };
std::cout << "Before sort:";
printArray(arr);
selectionSort(arr);
std::cout << "After sort:";
printArray(arr);
return 0;
}
运行效率
选择排序同样也包含两类步骤:比较和交换。以N个元素的数组,一共需要(N-1) + (N-2) +... +1次比较,但交换只需要0或1次,只有当最小值不处于正确位置时才会需要交换,而冒泡排序在倒序的情况下需要N-1次交换,也就是说选择排序所需步骤大约时冒泡排序的一半,运行效率上也就快一倍。
但如果仅仅从时间复杂度的角度来看,选择排序和冒泡排序其实时完全相同的,这就涉及到大O激发的一个重要原则:大O记法忽略常数。其实更确切地讲是忽略指数以外的常数。
大O类别
大O算法忽略常数,因为大O记法只关注算法速度的总体类别。O(N)算法和O(N^2)算法间的效率差距过大,以至于究竟是O(2N)、O(N/2)都无所谓。同时大O算法除了关注算法所需的步骤数,它还描述了随着数据量的增加,算法步骤数的长期增长。
综上,虽然大O记法可以比较不同类别复杂度的算法,但是当两个算法的复杂度属于同一类别时,还是需要进一步分析才能确定哪个算法更快。