- 博客(25)
- 收藏
- 关注
原创 在NVIDIA 4070Ti显卡上部署Qwen2-VL-7B-Instruct大模型的过程
通过上述步骤,我们成功地在NVIDIA 4070Ti显卡上部署了 Qwen2-VL-7B-Instruct 大模型。我们通过混合精度计算(FP16)和 Flash Attention 2 技术显著优化了显存的使用,确保模型在较低显存的情况下也能顺利运行。在遇到显存不足等问题时,通过调整生成的最大token数量和使用更小的batch size,我们有效地避免了显存溢出的问题。这为大模型的本地推理提供了一个实际可行的解决方案,能够在资源有限的环境中充分利用GPU加速,并且确保推理的高效性。
2024-12-26 10:04:39
2896
原创 如何使用Python调用SD模型进行文生图
Stable Diffusion(简称SD)是一个开源的深度学习文本到图像生成模型,它能够根据给定的文本描述生成相应的图像。本文将介绍如何使用Python来调用Stable Diffusion模型进行文生图。
2024-12-25 16:36:17
1101
原创 DeepSeek-VL2部署指南
DeepSeek-VL2是一款力图学习和实现深度学习和视觉语言结合的工具包。本文将介绍如何在本地环境中安装和部署DeepSeek-VL2。
2024-12-24 15:25:44
33093
5
原创 混元大模型简介及个人运行方案
混元大模型作为开源视频生成领域的突破性进展,为开发者和研究人员提供了强大的工具。无论是单显卡还是多显卡方案,通过合理的配置和优化策略,都能有效运行该模型,满足高质量视频生成的需求。这不仅为个人学习和研究提供了可能,也有助于推动视频生成技术的进一步发展。
2024-12-21 21:03:44
1801
原创 深度学习模型 DeepSeek-VL2 及其消费级显卡需求分析
DeepSeek-VL2 是基于深度学习的视觉语言模型,其主要特点如下:混合专家架构:DeepSeek-VL2 采用了混合专家(MoE)架构,这使得模型在参数规模扩展的同时能够有效控制计算成本。通过分配专家来处理不同的任务,可以提高模型的计算效率。动态高分辨率视觉编码:该模型引入了动态平铺视觉编码策略,能够处理不同纵横比的高分辨率图像,提升视觉任务中的表现,尤其是在视觉定位、文档分析等任务中。
2024-12-20 19:53:11
12522
3
原创 GPT-Omni 与 Mini-Omni2:创新与性能的结合
GPT-Omni 和 Mini-Omni2 分别以“全能性”和“轻量性”定位,在不同的应用场景中提供优质解决方案。前者适合对功能和性能要求高的大型应用,后者则在资源受限的环境中表现卓越。随着技术的不断进步和市场需求的演变,这两款产品都将在未来发挥更大的作用,为人工智能的普及和深化应用奠定坚实基础。附一个AI编写标书工具。
2024-12-19 21:14:30
1124
原创 Stable Zero123 模型介绍
Stable Zero123 通过强大的图像到 3D 生成能力和开放的技术支持,为研究者和开发者提供了一个探索 3D 内容创作的高效工具。无论是个人学习、教育研究,还是商业应用,它都具备极大的潜力和价值。
2024-12-18 16:51:14
1028
原创 Ruyi-Mini-7B:开源的图像生成视频模型
图像到视频:以静态图像为输入,生成动态视频。多分辨率支持:支持 360p 至 720p 的分辨率以及各种宽高比。灵活时长:可生成最多 5 秒的视频内容。高级控制:内置运动和摄像机控制,增强用户对视频动态的操控能力。Ruyi-Mini-7B 是一个强大的图像生成视频模型,结合了先进的架构设计和高质量的训练数据。无论是科研用途还是实际创意场景,它都为用户提供了强大的视频生成能力。凭借开源的特性与详细的文档支持,Ruyi-Mini-7B 让每位用户都能轻松体验视频生成的乐趣与创造力。
2024-12-17 18:01:28
1508
原创 探索 Janus-1.3B:一个统一的 Any-to-Any 多模态理解与生成模型
Janus-1.3B 是一个强大的自回归框架,旨在提供统一的多模态理解与生成能力。与传统的多模态模型不同,Janus 通过将视觉编码解耦为独立的路径,解决了视觉编码在理解和生成任务中相互冲突的问题。这种解耦方式提高了模型的灵活性,使其能够在处理多模态数据时展现更强的性能。Janus-1.3B 基于 DeepSeek-LLM-1.3b-base,该模型经过约 500B 文本标记的训练,具有强大的文本处理能力。
2024-12-16 20:27:42
1673
原创 DETR-ResNet-50:Facebook的革命性目标检测模型
DETR(DEtection TRansformer)是一种基于Transformer架构的目标检测模型,旨在解决传统卷积神经网络(CNN)在目标检测中的一些局限性。与传统目标检测方法依赖区域提议网络(RPN)不同,DETR通过将图像分割成固定数量的“对象查询”来进行目标识别。这些查询类似于图像中的“潜在对象”,每个查询通过Transformer的编码器-解码器结构与图像中的特征相结合,从而实现对目标的定位和分类。
2024-12-13 14:00:39
1449
原创 Meta Llama 3:fb羊驼的第三次进化
Meta公司推出了他们的最新大型语言模型——Meta Llama 3,而我们今天的主角就是它那身材精干却智慧超群的 Llama-3-8B,一个体重仅8B(参数数量)的语言“羊驼”。这位“数字羊驼”的特别之处还在于,它的训练和使用严格遵循Meta Llama 3社区许可协议,既保证了开源社区的公平性,又避免了滥用。8B参数的“小骆驼”,也有大智慧。
2024-12-12 14:29:47
680
原创 【InternVL2_5-78B】——“让图像、视频和文本都听你的!”
InternVL2_5-78B 是一个真正“全能型”的多模态大语言模型,它打破了传统模型只能处理单一数据类型的局限,能够同时理解并处理图像、文本和视频。无论是在图文搜索、视频分析,还是智能客服等领域,它都能发挥出色的能力。如果你希望在复杂的任务中充分利用视觉和语言信息,这款模型无疑是一个非常强大的工具。是时候让 InternVL2_5-78B 这种“全能选手”来帮你搞定多模态任务了,试试看吧!
2024-12-11 21:45:08
1344
原创 Table Transformer:变身表格界的福尔摩斯
Table Transformer 并不是你的普通对象检测工具。它是一款 Transformer 架构 的模型,设计上继承了 DETR 的精髓,但在表格检测方面尤为出色。与普通检测模型不同,
2024-12-10 11:47:27
1709
原创 TimeSformer模型:视频理解领域的全新突破
在视频内容日益丰富的今天,如何高效地分析和理解视频数据已成为人工智能领域的重要课题。由Meta团队开发的TimeSformer模型,通过将Transformer架构引入视频理解领域,为这一问题提供了创新的解决方案。本文将详细介绍TimeSformer模型,并探讨其应用前景。
2024-12-09 15:31:03
994
原创 探索语音合成的进化:Coqui XTTS-v2,你的声音魔术师!
Coqui XTTS-v2不只是一个工具,它是语音合成领域的一次革命。无论你是内容创作者、技术开发者,还是企业用户,XTTS-v2都能为你打开一扇声音的魔法之门。在未来,随着技术的进一步发展,也许我们每个人都能拥有一个专属的数字声音分身。还在等什么?快去尝试吧,看看这个“小青蛙”能为你的项目带来怎样的奇迹!
2024-12-07 22:47:49
1661
原创 树莓派跑大模型?别慌,咱们有套路!
大家好,我的亲爱的小伙伴们!今天我们来聊聊一个看似“天方夜谭”的话题:如何在资源有限的硬件上跑起大模型。什么硬件?比如咱们熟悉的树莓派这种“小身板”。是的,我知道你可能在想:“树莓派跑大模型?你当它是钢铁侠的芯片啊?别急,听我慢慢给你摆。
2024-12-06 09:43:12
1290
原创 SmolVLM:一款轻量高效的图文多模态模型
SmolVLM 是一款多模态模型,支持图像和文本的结合输入,并且能够生成与图像内容相关的文本输出。它可以处理多种任务,包括图像描述、视觉问答、基于图像的故事生成等。具体而言,SmolVLM 可以用于以下几种主要任务:图像描述(Image Captioning):根据给定的图像,生成准确的文本描述。视觉问答(Visual Question Answering, VQA):根据图像内容回答文本形式的问题。
2024-12-05 14:04:26
1319
原创 使用Python,获取汉字的拼音
在日常工作中,尤其是在语言学习、数据处理、或是对中文字符的处理时,我们可能需要将汉字转换为拼音。对于许多场景来说,拼音不仅仅需要字母拼写,还需要附带音调,以便正确表达每个字的发音。这篇文章将教你如何使用 Python 实现快速生成带音调的拼音,尤其是对于 Excel 中的汉字列。工具介绍我们将使用 Python 中的 pypinyin 库,这个库提供了简洁而强大的方法来转换汉字为拼音,包括音调。通过以下步骤,你可以快速实现带音调的拼音生成。安装 pypinyin 库。
2024-12-04 10:27:06
1095
原创 令人兴奋的突破:清华团队的机器人扩散模型将如何改变未来
通过对超过100万次多机器人剧集的预训练,RDT-1B在理解和预测复杂的机器人动作方面展示了极高的能力,同时其代码、模型权重和数据集均以MIT开源许可发布,推动了研究社区的共享与发展。作为一个技术从业者,RDT-1B的发布让我看到了多模态模型在实际场景中的强大潜力。如果你和我一样,对未来机器人技术充满期待,那么不妨访问RDT-1B的项目页面,阅读论文或者下载代码库,亲自感受这一令人兴奋的技术突破。作为一个技术爱好者和实践者,我对RDT-1B感到由衷的兴奋,它的潜力将为机器人技术的未来铺平道路。
2024-12-03 09:30:32
914
原创 写标书的注意事项:如何提升中标率
投标是企业获取项目的重要途径之一。写一份高质量的标书,不仅能够展示公司的实力,还能增加中标的机会。标书不仅仅是一个简单的文件,它是企业向客户展示自身能力与方案的关键。本文将介绍写标书时需要注意的一些要点,帮助你提升投标成功的几率。
2024-12-01 23:46:27
1089
原创 使用 Conda 部署 Whisper 模型
首先,我们需要为 Whisper 创建一个新的 Conda 环境,这样可以隔离项目的依赖,避免和其他项目的库产生冲突。
2024-11-29 11:32:28
1526
原创 使用AI编写投标文件,真的可以吗?
在当今快速发展的数字化时代,AI已经渗透到我们工作和生活的方方面面。从聊天机器人到图像生成工具,AI的强大能力令人惊叹。然而,当AI的触角延伸到编写专业化、高度复杂的投标文件时,我们不禁要问:真的可以吗?
2024-11-26 10:08:06
1457
2
原创 部署YOLOv8的过程
从环境配置到测试推理,我花了大约两个小时完成了YOLOv8的部署。整个过程并不复杂,但需要注意依赖版本的匹配和路径的设置。YOLOv8提供了极简的接口和良好的性能,非常适合快速实现目标检测功能。希望我的这篇记录能为有类似需求的人提供帮助!如果在部署过程中遇到问题,欢迎一起讨论交流。
2024-11-26 09:44:28
844
原创 记录一下 TensorFlow 的基本概念和使用场景
TensorFlow是一个功能强大且灵活的机器学习框架,适用于各种不同的应用场景。无论是从事学术研究还是工业应用,TensorFlow都可以为开发者提供强大的工具和支持。TensorFlow是一个开源的机器学习框架,由Google开发和维护。它提供了一种灵活的方式来构建和训练各种机器学习模型。变量(Variable):在模型训练过程中可被修改和更新的张量。它们通常表示模型的权重和偏置。
2024-11-24 09:42:11
302
原创 告别手动编写!AI助你轻松生成标书
本使用手册旨在帮助您更好地理解和使用本 AI 自动编写标书文本软件。如果您在使用过程中遇到任何其他问题或需要进一步的帮助,请随时联系我们。祝您使用愉快!
2024-11-13 23:17:55
2673
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人