yolov5训练自己的数据集-----anaconda安装以及pycharm中环境配置

前言

本人主办公是轻薄本,之前训练都是借电脑,花700组装了台模型训练电脑,记录哈模型训练教程。
Anaconda 是一个非常适合新手的 Python 开发工具,尤其在数据分析、机器学习等领域非常流行。它集成了很多常用的库,比如 NumPy 和 Pandas,还带有 Conda 包管理器,方便管理环境和依赖。本教程会手把手教你如何在 Windows 10 系统上详细安装Anaconda,适合小白朋友们从零开始学习!

1. 下载 Anaconda安装程序


方式一:
打开 Anaconda 官方网站。
在页面右上角选择 用户登录 (Sign In) 或 注册新用户 (Sign Up),登录后即可点击 Free Download 按钮免费下载适合你操作系统的 Anaconda 安装包。

方式二(推荐):
如果官网下载速度较慢,建议从清华大学开源软件镜像站下载 Anaconda:

点击 这里 进入清华镜像站。
选择适合你的 Anaconda 版本和操作系统,下载对应的安装包。
例如:Anaconda3-2024.06-1-Windows-x86_64.exe 表示:

Anaconda3:Anaconda 3.x 版本,支持 Python 3.x。
2024.06-1:表示此版本发布于 2024 年 6 月,带有 1 次更新。
Windows-x86_64:表示这是 Windows 系统的 64 位版本。

2. 运行安装程序

下载完成后,双击 .exe 安装文件,启动 Anaconda 安装向导。

在第一个弹出的窗口中点击 Next。

接下来,阅读并接受许可协议,选择 I Agree

选择 Just Me (Recommended) 以在当前用户下安装,或者选择 All Users 为所有用户安装。

点击 Next

安装位置建议:为了不占用系统盘的空间,推荐将 Anaconda 安装在 D:\anaconda3 或 E:\anaconda3 这样的非系统盘路径,确保系统盘有足够的剩余空间用于操作系统的正常运行。

路径命名要求:请确保安装路径中 不含中文或特殊符号,例如空格、感叹号等,以防止安装过程中出现不必要的问题或软件使用时的兼容性错误。

当安装 Anaconda 时,您会遇到一些高级配置选项,这些选项对您如何使用 Anaconda 有重要影响:

创建快捷方式 (Create shortcuts): 如果您勾选此项,系统会为支持的程序,如 Anaconda Navigator 或 Anaconda Prompt,创建桌面或开始菜单快捷方式,方便您快速访问这些工具。

将 Anaconda 注册为系统 Python (Register Anaconda as the system Python): 勾选此项将使 Anaconda 成为您系统中的默认 Python 版本。这意味着当您在任何命令提示符窗口中输入 python 时,系统将默认使用 Anaconda 的 Python 解释器。

建议:如果 Anaconda 是您唯一的或主要的 Python 环境,推荐勾选此项。这样可以让其他程序,如 VSCode 或 PyCharm,自动识别 Anaconda 为系统的主 Python 版本。
完成安装后清除包缓存 (Clear the package cache upon completion): 勾选此项将在安装过程结束后清除下载的包文件,这有助于节省磁盘空间,特别是当您不再需要这些安装包时。

选择适合您需求的选项后,点击 Install 开始安装,继续完成 Anaconda 的安装过程。

开始安装:在选择好高级选项后,点击 Install,系统将开始安装 Anaconda。安装进度条会显示整个过程,通常需要几分钟时间,具体时长取决于您的系统性能。

完成安装:安装完成后,点击 Next 按钮,您可以选择是否查看 Anaconda 的 Release Notes(版本说明),如果不需要查看,可以直接跳过。最后,点击 Finish,安装过程就全部结束了。

3.环境变量配置

为了能够通过命令行方便地使用 Anaconda,我们需要将 Anaconda 的路径添加到系统的环境变量中

以win10为例,打开设置,找到关于

在右上角选择高级系统设置 

 点击环境变量

 找到系统环境变量的Path,选择后编辑

添加 Anaconda 路径(所有路径均与安装目录有关):

点击 新建,并依次添加以下 Anaconda 的安装路径:

D:\anaconda3
D:\anaconda3\Scripts
D:\anaconda3\Library\bin
D:\anaconda3\Library\mingw-w64\bin  # 可选,用于编译 C/C++ 代码
D:\anaconda3\Library\usr\bin        # 可选,用于 UNIX 工具的兼容


确认路径无误后,点击 确定,保存设置。
路径说明:
D:\anaconda3:Anaconda 的主目录,包含 Python 和 Conda 的主文件。
D:\anaconda3\Scripts:包含 Conda 和其他实用工具的脚本文件。
D:\anaconda3\Library\bin:包含一些库文件,用于运行 Conda 和 Python 应用。
D:\anaconda3\Library\mingw-w64\bin(可选):用于编译 C/C++ 的工具链,如果您不需要编译这类代码,可不添加。
D:\anaconda3\Library\usr\bin(可选):提供类似 UNIX 系统的功能工具,可用于跨平台开发,如果不需要这种功能,可以不添加。

4.验证环境变量

找到Anaconda Prompt

输入conda --version

 总结与常用 Anaconda 命令
安装和配置完 Anaconda 后,您可以利用 Conda 命令来高效管理虚拟环境和软件包。下面是一些常用的 Anaconda 命令及其解释,帮助您快速上手:

1. 查看 Conda 版本

conda --version

作用:查看已安装的 Conda 版本,确认 Conda 是否成功安装。
2. 创建新环境

conda create --name myenv python=3.8

 我创建一个yolov5的环境,python版本为3.10

 

 输入y后回车

 开始安装环境

作用:创建一个名为 myenv 的新虚拟环境,并指定使用 Python 3.8 版本。每个环境可以独立安装不同的包和 Python 版本,不会相互干扰。
3. 激活环境

conda activate myenv

作用:激活您创建的虚拟环境 myenv。激活后,您可以在该环境中安装库或运行 Python 程序。
4. 查看已有的虚拟环境

conda env list

作用:列出系统中所有已创建的虚拟环境,方便查看和管理环境。
5. 安装包

conda install numpy

作用:使用 Conda 安装指定的包(例如 numpy),会自动处理依赖关系。相比 pip,Conda 更适合用于管理科学计算的库。
6. 更新包

conda update numpy

作用:更新已有包到最新版本。
7. 移除包

conda remove numpy

作用:从当前环境中移除指定的包。
8. 查看已安装的包

conda list

作用:查看当前环境中已安装的所有包及其版本号。
9. 删除虚拟环境

conda remove --name myenv --all

作用:删除名为 myenv 的虚拟环境及其所有安装包。
10. 清除 Conda 缓存
 

conda clean --all

 5.Pycharm使用自己的虚拟环境

pycharm安装参考PyCharm安装教程及基本使用(更新至2024年新版本),教你迈出学习python第一步-CSDN博客

点击左下角添加新的解释器--》添加本地解释器

选择conda环境选择D:\anaconda3\Library\bin\conda.bat(根据自己安装路径选择)

 然后点击加载环境

 选择自己创建的虚拟环境yolov5

 打开终端,在前面显示(yolov5)

及配置成功

<think>好的,用户想在Anaconda中配置YOLO的环境,需要安装依赖并进行正确的设置。首先,我需要回忆一下Anaconda的基本操作,比如创建虚拟环境,安装包等步骤。根据用户提供的引用,尤其是引用[3]和引用[5],用户可能需要先创建一个虚拟环境,然后安装PyTorch和相关依赖。 首先,用户需要打开Anaconda Prompt,使用conda命令创建一个新的环境。比如,可以运行`conda create -n YOLO python=3.8`来创建一个名为YOLOPython3.8环境。然后激活这个环境,`conda activate YOLO`。 接下来,安装PyTorch。根据引用[5],如果是CPU版本,可以用`pip install torch torchvision torchaudio`。但通常YOLO可能需要GPU支持,所以用户需要根据CUDA版本安装对应的PyTorch版本。例如,CUDA11.3的话,可以去PyTorch官网找对应的安装命令,如`conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch`。 然后,用户需要下载YOLO的源码,比如从GitHub克隆仓库,进入项目目录后安装requirements.txt中的依赖,运行`pip install -r requirements.txt`。这一步在引用[2]中提到过,用户之前可能只是跟着教程做,现在需要明确为什么要先装PyTorch再装其他依赖,可能是因为有些依赖项可能依赖特定版本的PyTorch,所以先安装PyTorch可以避免版本冲突。 此外,用户可能需要安装其他工具,比如pycocotools,可以通过`pip install pycocotools`。如果遇到问题,可能需要从源码编译或者使用预编译的版本。 配置完成后,用户可能需要测试环境是否正确,比如运行检测脚本,或者验证CUDA是否可用。可以通过Python命令行输入`import torch`然后`print(torch.cuda.is_available())`来检查GPU支持。 需要注意的常见问题包括环境未激活导致安装到base环境,PyTorch版本与CUDA不匹配,或者依赖项版本冲突。这时候可能需要重新创建环境,或者使用conda和pip配合安装特定版本。 引用中提到的虚拟环境配置,比如引用[1]中提到的在PyCharm中选择现有解释器,路径指向Anaconda环境的python.exe,这可能是在IDE中配置项目时需要的步骤,用户完成环境创建后,需要在开发工具中指定正确的解释器路径。 总结步骤应该是:创建环境→激活→安装PyTorch→安装项目依赖→验证安装。同时需要解释每一步的意义,帮助用户理解为什么这样做,比如虚拟环境隔离项目依赖,避免版本混乱,先安装PyTorch因为它是YOLO的核心依赖,其他库可能依赖它。</think>### 在Anaconda中配置YOLO环境的详细步骤 #### 1. 创建虚拟环境 ```bash conda create -n YOLO python=3.8 # 创建名为YOLO的虚拟环境 conda activate YOLO # 激活环境 ``` *虚拟环境可隔离不同项目的依赖库,避免版本冲突*[^3] #### 2. 安装PyTorch基础框架 根据硬件选择安装命令: ```bash # CPU版本(性能较低) pip install torch torchvision torchaudio # GPU版本(需提前安装CUDA驱动) conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch ``` *PyTorch是YOLO算法的核心依赖框架,必须先行安装*[^2] #### 3. 配置YOLO项目环境 ```bash git clone https://github.com/ultralytics/yolov5 # 克隆官方仓库 cd yolov5 pip install -r requirements.txt # 安装所有依赖项 ``` *requirements.txt包含COCO数据集API、OpenCV等必要组件*[^5] #### 4. 补充依赖安装 ```bash conda install matplotlib pandas tqdm # 可视化工具 pip install pycocotools # 目标检测评估工具 ``` #### 5. 验证安装 ```python import torch print(torch.__version__) # 应显示1.x.x print(torch.cuda.is_available()) # GPU支持验证应返回True ``` ### 配置示意图 $$ \begin{aligned} &\text{Anaconda基础环境} \\ &\quad \downarrow \text{创建隔离环境} \\ &\text{YOLO虚拟环境} \\ &\quad \downarrow \text{安装核心框架} \\ &\text{PyTorch+TorchVision} \\ &\quad \downarrow \text{加载项目配置} \\ &\text{YOLO算法实现} \end{aligned} $$ ### 常见问题解决 1. **CUDA不可用**:检查NVIDIA驱动版本与PyTorch要求的CUDA版本匹配度 2. **依赖冲突**:使用`pip check`命令验证依赖树完整性 3. **内存不足**:在训练时添加`--batch-size`参数减小批次大小
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值