datacloud 第一次学习记录

本文从机器学习的基本概念出发,介绍了线性回归的原理和代码实践,包括批量、随机和小批量梯度下降。同时,强调了数学基础中的线性代数,特别是矩阵的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

首先今天我们的任务里面有
线性回归、Softmax与分类模型、多层感知机
这三个主要内容

我们的学习流程是这样滴
机器学习简介
机器学习基本思想
判别模型与生成模型
线性回归
下面就让我们开始学习之旅吧

机器学习简介

一、机器学习的定义

研究学习方法
任务T,经验E,性能P,可以用三元组表示

二、两种机器学习模型类型

1.预测包括监督学习(根据数据预测输出)和无监督学习(生成数据)
2.决策 强化学习(在动态环境中采取行动获得随着时间推移最大化累积奖励)
不仅仅辅助人类,还需要采取行动。机器作为智能体,操作后判断环境状态。

三、机器学习的历史

50年代(创建机器学习术语)
60年代(神经网络、感知机、模式识别,因为感知机被证明了局限性所以被冷冻)
70年代(符号归纳、专家系统、决策树模型、AM)
80年代(EBL、反向传播、高级决策树)
90年代(文本学习、RL、SVM+核方法、贝叶斯、文本学习爱)
00年代(统计关系、图模型、机器人、计算机系统、概率图,变分推理,迁移学习,跨模态学习)
10年代(深度学习、GPU、DRL(Deepmind2014)、视觉语音文本、多任务+终身学习,深度强化学习)

机器学习基本思想

在这里插入图片描述
1.目标:损失函数(预测值与标签值)趋近于0
1)损失函数:类似 预测值与标签值 之间的方差
2.实现:梯度学习法
1)更新参数theta使得损失函数趋近于0
2)设定梯度下降步长
3.例子:
1)线性模型
以斜率和截距作为参数,目标函数为方差,可以做出二维权重分布 , 观测目标函数趋近于0的过程。
2)泛线性模型
5次幂指数的泛线性模型可以完美拟合6个实验点
4.关键:如何选择模型
机器学习过程:原始数据->数据规范化(特征选择等)->分成训练数据,测试数据(尽量保证二者相像)-> 训练训练数据得到模型->在测试数据上跑模型得到评价。
监督学习:已知特征x,已知标签y,拟合一个映射函数f。(先假设y和x线性相关),那么拟合映射函数f的过程等同于拟合f关于x的参数theta。

梯度学习方法

判别模型与生成模型

判别模型
对可观测变量和未知变量的关联性建模
也称为条件模型
确定性判别: y = fθ(x)
随机判别: pθ(y | x)
应用
直接建模预测标签与已知特征的关联
易于定义特定依赖的特征和模型
实际上产生更高的预测性能
举例
线性回归,逻辑回归,k近邻, 支持向量机, (多层)感知机,决策树,随机森林等
生成模型
建立数据的联合概率分布
给定一些隐参数或隐变量pθ(x, y)
进行条件推断
应用
探寻数据分布(数据科学的本质)
受益于隐变量建模
举例
朴素贝叶斯,隐马尔科夫模型,混合高斯模型,马尔科夫随机场, 隐狄利克雷分布(LDA)等
在这里插入图片描述
看到这本喵就非常不懂了 所以我去补一下数学基础知识啦!!!

经过了ElitesAI人工智能中的数学基础的学习:极限、连续、导数、随机事件与概率、条件概率与独立性、随机变量与概率分布

下面让我们进入线性回归的学习

线性回归

线性判别模型

判别模型
性质

  • 建模预测变量和观测变量之间的关系
  • 也称条件模型(conditional models)

分类

  • 确定性判别模型
  • 概率判别模型

线性回归
一维的线性回归和二次回归(都是线性模型 )
二维
因为我们的目标是使预测值和真实值的距离越近越好

所以引入损失函数来测量预测值与真实值之间的误差
具体损失函数的定义依赖于具体的数据与任务
最广泛使用的损失回归函数:平方误差(square loss)

最小均方误差回归
优化目标是最小化训练数据上的均方误差

梯度学习方法

梯度更新方式

批量梯度下降

在这里插入图片描述

随机梯度下降

在这里插入图片描述
建立在每个数据对(yi,xi)

小批量梯度下降

在这里插入图片描述

基本搜索步骤

随机选择一个参数初始化
根据数据和梯度算法来更新
直到走到局部一个最小区域
凸优化目标函数
在这里插入图片描述
凸集
在这里插入图片描述
凸函数(convex function)
在这里插入图片描述
dom f 是一个凸集 (即定义域)
学习率
在这里插入图片描述

线性回归 代码实践

预测房价
五个特征

数据准备

numpy库的介绍
sklearn库
代码解释

数学基础

线性代数

向量

转置transpose
特殊向量
零向量、基本向量(只有一个元素为1,其他元素皆等于0的列向量称为基本向量)
线性空间
给定一个向量的集合s,如果其对于树乘与向量的加法封闭,则称之为一个向量空间或线性空间
向量空间的基
对于给定的线性空间s如果他可以写成某个向量集合b张成的空间,即s=span(b),并且b的任何真子集都不能张成s,即称b是s的一组基(basis)
基是单位向量在各个维度上的分量
b的大小称为s的维度
向量的独立性
如果说b是线性空间s的基,那么b中的向量是独立的

矩阵

矩阵基础
研究矩阵是为了求解线性方程组
矩阵符号
例如矩阵a
a(i,:)a的第i行
a(:,j)a的第j列
a(p:q,r:s)由a的第p行到第q行,第r列到第s列组成的子矩阵
对角矩阵:主对角线以外元素全为0⃣️的正方矩阵,记作a=diag(a11,……,ann)
单位矩阵:主对角线元素全为1⃣️的对角矩阵,记作inn
矩阵的转置:在矩阵右上角加大写t即表示转置后的矩阵,行变成列,列变成行
矩阵乘法:a矩阵m
n与b矩阵ns进行乘积,得到一个新矩阵ms记作ab(a的列数要等于b的行数)
矩阵的逆
ab=ba=i单位矩阵
则b是a逆矩阵
学习水平有限 暂时只学到这
更多内容请看伯禹学习平台https://www.boyuai.com/elites/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值