caffe
训练网络模型一般直接使用的caffe.bin
: caffe train -solver solver.prototxt
,其实这个命令的本质也是调用c++的Solver
.
本文给出使用纯c++
代码,使用mnist数据
+多层感知机网络
,训练数字分类问题。然后用C++
调用训练好的模型测试分类。
solver.prototxt
文件内容如下:
net: "/home/xy/caffe_analysis/my_caffe/example/lenet.prototxt"
test_iter: 1000
test_interval: 100
base_lr: 0.001
lr_policy: "step"
gamma: 0.1
stepsize: 5000
display: 1000
max_iter: 20000
momentum: 0.9
weight_decay: 0.0005
snapshot: 10000
snapshot_prefix: "model"
solver_mode: CPU
注:网络名称虽然为lenet.prototxt,实际是多层感知机。
训练网络如下:
name: "LeNet"
layer {
name: "mnist"
#name: "data"
type: "Data"
top: "data"
top: "label"
include {
phase: TRAIN
}
transform_param {
scale: 0.00390625
}
data_param {
source: "/home/xy/caffe-master/examples/mnist/mnist_train_lmdb"
batch_size: 64
backend: LMDB
}
}
layer {
name: "mnist"
type: "Data"
top: "data"
top: "label"
include {
phase: TEST
}
transform_param {
scale: 0.00390625
}
data_param {
source: "/home/xy/caffe-master/examples/mnist/mnist_test_lmdb"
batch_size: 100
backend: LMDB
}
}
layer {
name: "fc1"
type: "InnerProduct"
# learning rate and decay multipliers for the weights
param { lr_mult: 1 decay_mult: 1 }
# learning rate and decay multipliers for the biases
param { lr_mult: 2 decay_mult: 0 }
inner_product_param {
num_output: 300
weight_filler {
type: "xavier"
}
b