caffe c++示例(mnist 多层感知机c++训练,测试)

caffe训练网络模型一般直接使用的caffe.bin: caffe train -solver solver.prototxt,其实这个命令的本质也是调用c++的Solver.

本文给出使用纯c++代码,使用mnist数据+多层感知机网络,训练数字分类问题。然后用C++调用训练好的模型测试分类。

solver.prototxt文件内容如下:

net: "/home/xy/caffe_analysis/my_caffe/example/lenet.prototxt"
test_iter: 1000
test_interval: 100
base_lr: 0.001
lr_policy: "step"
gamma: 0.1
stepsize: 5000
display: 1000
max_iter: 20000
momentum: 0.9
weight_decay: 0.0005
snapshot: 10000
snapshot_prefix: "model"
solver_mode: CPU

注:网络名称虽然为lenet.prototxt,实际是多层感知机。

训练网络如下:

在这里插入图片描述

name: "LeNet"
layer {
  name: "mnist"
  #name: "data"
  type: "Data"
  top: "data"
  top: "label"
  include {
    phase: TRAIN
  }
  transform_param {
    scale: 0.00390625
  }
  data_param {
    source: "/home/xy/caffe-master/examples/mnist/mnist_train_lmdb"
    batch_size: 64
    backend: LMDB
  }
}

layer {
  name: "mnist"
  type: "Data"
  top: "data"
  top: "label"
  include {
    phase: TEST
  }
  transform_param {
    scale: 0.00390625
  }
  data_param {
    source: "/home/xy/caffe-master/examples/mnist/mnist_test_lmdb"
    batch_size: 100
    backend: LMDB
  }
}


layer {
  name: "fc1"
  type: "InnerProduct"
  # learning rate and decay multipliers for the weights
  param { lr_mult: 1 decay_mult: 1 }
  # learning rate and decay multipliers for the biases
  param { lr_mult: 2 decay_mult: 0 }
  inner_product_param {
    num_output: 300
    weight_filler {
      type: "xavier"
    }
    b
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值