【MUST仿真--线阵B模式成像】

matlab 上MUST(matlab ultrasound toolbox 用例 -- 线阵B模式成像)

环境搭建

  • Window 11 + matlab 2023b
  • MUST 包,官网地址
  • 将下载的MUST包,放置在matlab安装目录的toolbox下,根据如下
    MUST 包生效设置

线阵B模式成像

% config probe parameters
param = getparam('L11-5V');

% each element's coordinates 
L = param.pitch*(param.Nelements-1); % array aperture (in m)
xe = linspace(-0.5,0.5,param.Nelements)*L;
ze = zeros(1,param.Nelements);

% config the sub-aperture to 24
param_suba = param;
param_suba.Nelements = 24;

% config the focus
xf = 0; zf = 2.5e-2; % focus position (in m)

% calculate the tx-delay, the distance from each element to the focal point
% For elements that do not transmit, set the delay 
### 二维线相机成像原理 #### 物理基础 二维线相机是一种特殊的图像采集设备,其核心部件是一维排列的感光元件(如CCD或CMOS),这些感光单元沿一条直线分布。当物体通过该传感器前方时,在特定时间内,每一个位置上的像素都会捕捉到对应于某一固定高度的一条水平线上反射回来的光线强度信息[^1]。 #### 工作过程 工作过程中,被摄对象沿着垂直于线的方向移动,这样可以使得整个表面的不同部分依次经过这条固定的扫描线。随着物体持续运动并不断触发曝光操作,最终能够获得一系列按时间顺序排列的数据帧;每一帧代表了物体某一部分在这个瞬间的状态投影。随后软件算法会对多张连续拍摄得到的小片段进行拼接处理,从而重建出完整的二维平面图形[^2]。 #### 应用特点 这种类型的摄像机特别适用于工业检测领域中的高速生产线监测任务,因为它们能够在保持高分辨率的同时实现快速读取速度,并且由于只需要关注单一行内的变化情况,因此对于某些特殊应用场景下的成本控制也较为有利。然而需要注意的是,为了确保获取高质量的结果,必须精确控制好样品相对于探测器的速度以及光照条件等因素[^3]。 ```python import numpy as np from matplotlib import pyplot as plt def simulate_line_scan(image, scan_direction='horizontal'): """ Simulate the scanning process of a line array camera. Parameters: image (numpy.ndarray): The input 2D image to be scanned by simulation. scan_direction (str): Direction of simulated scan ('horizontal' or 'vertical'). Returns: list: A sequence of lines representing each step during the scan. """ if scan_direction not in ['horizontal', 'vertical']: raise ValueError("Scan direction must be either 'horizontal' or 'vertical'") result = [] shape = image.shape for i in range(shape[0] if scan_direction == 'horizontal' else shape[1]): slice_index = i if scan_direction == 'horizontal' else None # Extract one row/column at a time based on specified direction current_slice = image[slice_index,:] if scan_direction=='horizontal' else image[:,slice_index] result.append(current_slice) return result # Example usage with an artificial test pattern test_image = np.zeros((8, 8)) for r in range(8): for c in range(r % 2, 8, 2): test_image[r][c] = 1. scanned_lines = simulate_line_scan(test_image) plt.figure(figsize=(10, 5)) for idx, line in enumerate(scanned_lines): plt.subplot(len(scanned_lines), 1, idx + 1) plt.imshow([line], cmap="gray", aspect='auto') plt.axis('off') plt.tight_layout() plt.show() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值